Spatio-temporal co-attention fusion network for video splicing localization

被引:0
|
作者
Lin, Man [1 ,2 ]
Cao, Gang [1 ,2 ]
Lou, Zijie [1 ,2 ]
Zhang, Chi [1 ,2 ]
机构
[1] Commun Univ China, Sch Comp & Cyber Sci, Beijing, Peoples R China
[2] Commun Univ China, State Key Lab Media Convergence & Commun, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
video forensics; digital video forgery; video splicing localization; co-attention; MANIPULATION;
D O I
10.1117/1.JEI.33.3.033027
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
. Digital video splicing has become easy and ubiquitous. Malicious users copy some regions of a video and paste them into another video to create realistic forgeries. It is important to blindly detect such forgery regions in videos. A spatio-temporal co-attention fusion network (SCFNet) is proposed for video splicing localization. Specifically, a three-stream network is used as an encoder to capture manipulation traces across multiple frames. The deep interaction and fusion of spatio-temporal forensic features are achieved by the novel parallel and cross co-attention fusion modules. A lightweight multilayer perceptron decoder is adopted to yield a pixel-level tampering localization map. A new large-scale video splicing dataset is created for training the SCFNet. Extensive tests on benchmark datasets show that the localization and generalization performances of our SCFNet outperform the state-of-the-art. Code and datasets are available at https://github.com/multimediaFor/SCFNet.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Spatio-Temporal Articulation & Coordination Co-attention Graph Network for human motion prediction
    Zhu, Shuang
    Chen, Jin
    Su, Yong
    SIGNAL PROCESSING, 2024, 223
  • [2] Spatio-Temporal Deformable Attention Network for Video Deblurring
    Zhang, Huicong
    Xie, Haozhe
    Yao, Hongxun
    COMPUTER VISION - ECCV 2022, PT XVI, 2022, 13676 : 581 - 596
  • [3] Spatio-temporal Attention Network for Video Instance Segmentation
    Liu, Xiaoyu
    Ren, Haibing
    Ye, Tingmeng
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 725 - 727
  • [4] Spatio-Temporal Convolution-Attention Video Network
    Diba, Ali
    Sharma, Vivek
    Arzani, Mohammad. M.
    Van Gool, Luc
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 859 - 869
  • [5] Spatio-Temporal Deformable Attention Network for Video Deblurring
    Zhang, Huicong
    Xie, Haozhe
    Yao, Hongxun
    arXiv, 2022,
  • [6] Spatio-Temporal Fusion Network for Video Super-Resolution
    Li, Huabin
    Zhang, Pingjian
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [7] Spatio-Temporal Self-Attention Network for Video Saliency Prediction
    Wang, Ziqiang
    Liu, Zhi
    Li, Gongyang
    Wang, Yang
    Zhang, Tianhong
    Xu, Lihua
    Wang, Jijun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 1161 - 1174
  • [8] Attention Embedded Spatio-Temporal Network for Video Salient Object Detection
    Huang, Lili
    Yan, Pengxiang
    Li, Guanbin
    Wang, Qing
    Lin, Liang
    IEEE ACCESS, 2019, 7 : 166203 - 166213
  • [9] Spatio-Temporal Information Fusion Network for Compressed Video Quality Enhancement
    Huang, Weiwei
    Jia, Kebin
    Liu, Pengyu
    Yu, Yuan
    2023 DATA COMPRESSION CONFERENCE, DCC, 2023, : 343 - 343
  • [10] MASTAF: A Model-Agnostic Spatio-Temporal Attention Fusion Network for Few-shot Video Classification
    Liu, Xin
    Zhang, Huanle
    Pirsiavash, Hamed
    Liu, Xin
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 2507 - 2516