Multi-View Cooperative Learning with Invariant Rationale for Document-Level Relation Extraction

被引:0
|
作者
Lin, Rui [1 ]
Fan, Jing [2 ,3 ]
He, Yinglong [2 ]
Yang, Yehui [2 ]
Li, Jia [4 ]
Guo, Cunhan [5 ]
机构
[1] Yunnan Univ, Dept Elect Engn, Kunming 650500, Peoples R China
[2] Yunnan Minzu Univ, Univ Key Lab Informat & Commun Secur Backup & Reco, Kunming 650500, Peoples R China
[3] Educ Instruments & Facil Serv Ctr, Educ Dept Yunnan Prov, Kunming 650500, Peoples R China
[4] Henan Normal Univ, Coll Comp & Informat Engn, Xinxiang 453000, Peoples R China
[5] Univ Chinese Acad Sci, Sch Emergency Management Sci & Engn, 1,Yanqihu East Rd, Beijing 101400, Peoples R China
关键词
Natural language processing; Relation extraction; Multi-view cooperative learning; Document-level; Rationale;
D O I
10.1007/s12559-024-10322-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Document-level relation extraction (RE) is a complex and significant natural language processing task, as the massive entity pairs exist in the document and are across sentences in reality. However, the existing relation extraction methods (deep learning) often use single-view information (e.g., entity-level or sentence-level) to learn the relational information but ignore the multi-view information, and the explanations of deep learning are difficult to be reflected, although it achieves good results. To extract high-quality relational information from the document and improve the explanations of the model, we propose a multi-view cooperative learning with invariant rationale (MCLIR) framework. Firstly, we design the multi-view cooperative learning to find latent relational information from the various views. Secondly, we utilize invariant rationale to encourage the model to focus on crucial information, which can empower the performance and explanations of the model. We conduct the experiment on two public datasets, and the results of the experiment demonstrate the effectiveness of MCLIR.
引用
收藏
页码:3505 / 3517
页数:13
相关论文
共 50 条
  • [1] Inter span learning for document-level relation extraction
    Liao, Tao
    Sun, Haojie
    Zhang, Shunxiang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 9965 - 9977
  • [2] Learning Logic Rules for Document-level Relation Extraction
    Ru, Dongyu
    Sun, Changzhi
    Feng, Jiangtao
    Qiu, Lin
    Zhou, Hao
    Zhang, Weinan
    Yu, Yong
    Li, Lei
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 1239 - 1250
  • [3] Survey on Document-Level Relation Extraction
    Zhou Y.
    Huang H.
    Liu H.
    Hao Z.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2022, 50 (04): : 10 - 25
  • [4] Document-Level Relation Extraction with Reconstruction
    Xu, Wang
    Chen, Kehai
    Zhao, Tiejun
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 14167 - 14175
  • [5] Evidence Reasoning and Curriculum Learning for Document-Level Relation Extraction
    Xu, Tianyu
    Qu, Jianfeng
    Hua, Wen
    Li, Zhixu
    Xu, Jiajie
    Liu, An
    Zhao, Lei
    Zhou, Xiaofang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (02) : 594 - 607
  • [6] Document-level Relation Extraction with Relation Correlations
    Han, Ridong
    Peng, Tao
    Wang, Benyou
    Liu, Lu
    Tiwari, Prayag
    Wan, Xiang
    NEURAL NETWORKS, 2024, 171 : 14 - 24
  • [7] Multi-perspective context aggregation for document-level relation extraction
    Ding, Xiaoyao
    Zhou, Gang
    Zhu, Taojie
    APPLIED INTELLIGENCE, 2023, 53 (06) : 6926 - 6935
  • [8] Document-Level Relation Extraction with Path Reasoning
    Xu, Wang
    Chen, Kehai
    Zhao, Tiejun
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2023, 22 (04)
  • [9] Multi-perspective context aggregation for document-level relation extraction
    Xiaoyao Ding
    Gang Zhou
    Taojie Zhu
    Applied Intelligence, 2023, 53 : 6926 - 6935
  • [10] Multi-granularity Neural Networks for Document-Level Relation Extraction
    Chen, Xiye
    Wang, Peng
    WEB AND BIG DATA, APWEB-WAIM 2024, PT V, 2024, 14965 : 95 - 112