Bisphenol A (BPA) is the most extensively produced chemical in the world. With its growing demand, it has become a common emerging organic contaminant (EOC) in the environment. It is an endocrine-disrupting chemical (EDC) that can disrupt the endocrine system and induce negative impacts on human health and other biota. To detoxify or remove BPA from the contaminated environment, researchers have developed several physicochemical and biological methods. Biodegradation is usually considered economical and environmentally safe. In the last few decades, huge experiments have been conducted using bacteria and fungi to degrade BPA. Thus, the present review aims to better understand the current knowledge on BPA biodegradation with bacteria and fungi to discover the limitations of those studies. In the case of bacteria, researchers used direct environmental raw samples for enrichment, isolation and degradation. Pseudomonas sp. was the most common bacteria in those samples to degrade BPA. Whereas in the case of fungi, previously isolated pure fungal strains were used. Those fungi were either ascomycetes or basidiomycetes, and most of those fungi produced an extracellular enzyme, laccase, to degrade BPA. Literature review shows that two toxic metabolites for fungal-mediated degradation (p-isopropenyl phenol and 4-ethyl-2-methoxyphenol) and six toxic metabolites for bacterialmediated degradation (p-hydroxybenzoic acid, p-hydroxybenzaldeyde, p-hydroxyacetophenone, hydroquinone, 2,3-bis(4-hydroxyphenyl)-1,2-propanediol, and p-hydroxyphenacylalcohol) were produced. Our review also reveals that most previous studies were conducted under non-extreme conditions, though extreme environments can be contaminated with BPA. Therefore, this review is certainly helpful in deeply revising the existing knowledge on BPA biodegradation to conduct novel research in the future to fill the research gaps in safer ways.