Geopolymer concrete (GC) emerges as a sustainable alternative yet faces challenges in achieving optimal resource utilization for strength development. Balancing these aspects is crucial for its large-scale adoption as a sustainable material. The type and dosage of precursors, activator, curing, and mixing conditions influence compressive strength, setting time, and workability. Moreover, multiple experimental trials are required for a desirable geopolymer blend. Even the experimental parameters alone do not meet the design principles concerning sustainable construction. This paper presents a study on the mix design and interpretation of machine learning techniques (MLT) with XAI. To train the model, extensive experimental databases using the shapley additive explanations (SHAP) technique rank input factors that impact the strength aspect. The prediction models' performance was compared using coefficient of determination (R2) and root mean square error (RMSE). SHAP interpretations reveal that temperature, Na to Al ratio, and NaOH molarity are the main factors influencing the compressive strength of GC. Further, these parameters were crucial in developing the dense geopolymer matrix. By integrating XAI into the MLT approach, we have also opened new criteria for understanding the complex relationships between geopolymer concrete potential parameters and their compressive strength.
机构:
Rutgers Business Sch, Newark, NJ 07102 USA
Southwestern Univ Finance & Econ, Res Inst Econ & Management, Chengdu, Peoples R ChinaRutgers Business Sch, Newark, NJ 07102 USA
Zhang, Chanyuan
Cho, Soohyun
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers Business Sch, Newark, NJ 07102 USARutgers Business Sch, Newark, NJ 07102 USA
Cho, Soohyun
Vasarhelyi, Miklos
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers Business Sch, Newark, NJ 07102 USARutgers Business Sch, Newark, NJ 07102 USA
机构:
DARPA, 675 North Randolph St, Arlington, VA 22201 USA
Facebook AI Res, 770 Broadway, New York, NY 10003 USADARPA, 675 North Randolph St, Arlington, VA 22201 USA
Gunning, David
Stefik, Mark
论文数: 0引用数: 0
h-index: 0
机构:
Palo Alto Res Ctr, 3333 Coyote Hill Rd, Palo Alto, CA 94304 USADARPA, 675 North Randolph St, Arlington, VA 22201 USA
Stefik, Mark
Choi, Jaesik
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Grad Sch Artificial Intelligence, 291 Daehak Ro, Daejeon 34141, South KoreaDARPA, 675 North Randolph St, Arlington, VA 22201 USA
Choi, Jaesik
Miller, Timothy
论文数: 0引用数: 0
h-index: 0
机构:
Univ Melbourne, Sch Comp & Informat Syst, Melbourne, Vic 3010, AustraliaDARPA, 675 North Randolph St, Arlington, VA 22201 USA
Miller, Timothy
Stumpf, Simone
论文数: 0引用数: 0
h-index: 0
机构:
City Univ London, Sch Math Comp Sci & Engn, Ctr HCI Design, London EC1V 0HB, EnglandDARPA, 675 North Randolph St, Arlington, VA 22201 USA
Stumpf, Simone
Yang, Guang-Zhong
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Inst Med Robot, Shanghai, Peoples R ChinaDARPA, 675 North Randolph St, Arlington, VA 22201 USA
机构:
Univ Melbourne, Ctr AI & Digital Eth, Sch Comp & Informat Syst, Melbourne, Vic 3010, AustraliaUniv Melbourne, Ctr AI & Digital Eth, Sch Comp & Informat Syst, Melbourne, Vic 3010, Australia
Miller, Tim
Hoffman, Robert
论文数: 0引用数: 0
h-index: 0
机构:
Inst Human & Machine Cognit, 40 S Alcaniz St, Pensacola, FL 32502 USAUniv Melbourne, Ctr AI & Digital Eth, Sch Comp & Informat Syst, Melbourne, Vic 3010, Australia
Hoffman, Robert
Amir, Ofra
论文数: 0引用数: 0
h-index: 0
机构:
Technion, Fac Ind Engn & Management, IL-3200003 Haifa, IsraelUniv Melbourne, Ctr AI & Digital Eth, Sch Comp & Informat Syst, Melbourne, Vic 3010, Australia
Amir, Ofra
Holzinger, Andreas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nat Resources & Life Sci Vienna, Human Ctr AI Lab, Peter Jordan Str 82, A-1090 Vienna, AustriaUniv Melbourne, Ctr AI & Digital Eth, Sch Comp & Informat Syst, Melbourne, Vic 3010, Australia