Knowledge graph fine-grained network with attribute transfer for recommendation

被引:1
|
作者
Yuan, Xu [1 ,2 ]
Chen, Zixuan [1 ,2 ]
Bu, Xiya [1 ,2 ]
Gao, Zhengnan [3 ]
Zhao, Liang [1 ,2 ]
Ma, Ruixin [1 ,2 ]
机构
[1] Dalian Univ Technol, Sch Software Technol, Dalian, Peoples R China
[2] Key Lab Ubiquitous Network & Serv Liaoning Prov, Dalian, Peoples R China
[3] Dalian Univ Technol, Cent Hosp, Dalian, Peoples R China
关键词
Knowledge graph; Cold-start items; Attribute transfer; Collaborative signals; Collaborative knowledge graph;
D O I
10.1016/j.eswa.2024.125074
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent times, knowledge graph (KG) has been frequently incorporated into recommendation systems as side information. The end-to-end method based on graph neural network (GNN), representing a contemporary technical hotspot, can comprehensively mine KG information. However, most GNN-based models (1) primarily emphasize the relative signals between users and items, and the collaborative signals among the users, but overlook the collaborative signals among the items; (2) generally struggle to effectively distinguish between cold-start items and general items in embedding learning. These drawbacks will cause insufficient information and low accuracy of item representations, further impairing the interpretability and accuracy of recommendation. To tackle them, Knowledge graph fine-grained network with attribute transfer for recommendation (KGFA) is proposed in this paper to address the insufficient correlations mining among items and inadequate cold-start item representation information in the knowledge-aware recommendation. Specifically, our method adopts attentive combination of intents to model user representation at a fine-grained level, and differentiates the contribution of diverse intents to user behavior for better model interpretability. Moreover, the cold-start items' neighbors are further propagated in our meticulously designed item attribute transfer space to thoroughly excavate the collaborative signals between items and enrich the information in the cold-start item representations. Abundant experiments on two public datasets verify the outstanding effectiveness of KGFA over state-of-the-art methods.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Fine-grained relation contrast enhancement of knowledge graph for recommendation
    Zhang, Junsan
    Wang, Te
    Wu, Sini
    Ding, Fengmei
    Zhu, Jie
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2024, : 485 - 505
  • [2] Identifying fine-grained vineyard pest using attribute knowledge graph
    Zheng Z.
    Li Y.
    Liu Y.
    Lin Z.
    Xiang Z.
    He M.
    Sun L.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2023, 39 (11): : 146 - 154
  • [3] DUSKG: A fine-grained knowledge graph for effective personalized service recommendation
    Wang, Haifang
    Wang, Zhongjie
    Hu, Sihang
    Xu, Xiaofei
    Chen, Shiping
    Tu, Zhiying
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 100 : 600 - 617
  • [4] Fine-Grained Recommendation Systems for Service Attribute Exchange
    Staite, Christopher
    Bahsoon, Rami
    Wolak, Stephen
    SERVICE-ORIENTED COMPUTING - ICSOC 2009, PROCEEDINGS, 2009, 5900 : 352 - +
  • [5] Multi-Graph Convolutional Network for Fine-Grained and Personalized POI Recommendation
    Zhang, Suzhi
    Bai, Zijian
    Li, Pu
    Chang, Yuanyuan
    ELECTRONICS, 2022, 11 (18)
  • [6] Construct Fine-Grained Geospatial Knowledge Graph
    Wei, Bo
    Guo, Xi
    Wu, Ziyan
    Zhao, Jing
    Zou, Qiping
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS. DASFAA 2023 INTERNATIONAL WORKSHOPS, BDMS 2023, BDQM 2023, GDMA 2023, BUNDLERS 2023, 2023, 13922 : 267 - 282
  • [7] Knowledge-aware fine-grained attention networks with refined knowledge graph embedding for personalized recommendation
    Wang, Wei
    Shen, Xiaoxuan
    Yi, Baolin
    Zhang, Huanyu
    Liu, Jianfang
    Dai, Chao
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [8] A graph embedding based model for fine-grained POI recommendation
    Hu, Xiaojiao
    Xu, Jiajie
    Wang, Weiqing
    Li, Zhixu
    Liu, An
    NEUROCOMPUTING, 2021, 428 : 376 - 384
  • [9] Fine-grained News Recommendation by Fusing Matrix Factorization, Topic Analysis and Knowledge Graph Representation
    Zhang, Kuai
    Xin, Xin
    Luo, Pei
    Guo, Ping
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 918 - 923
  • [10] Discovering Fine-Grained Semantics in Knowledge Graph Relations
    Jain, Nitisha
    Krestel, Ralf
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 822 - 831