共 50 条
Quasi-Baer * -Ring Characterization of Leavitt Path Algebras
被引:0
|作者:
Ahmadi, M.
[1
]
Moussavi, A.
[1
]
机构:
[1] Tarbiat Modares Univ, Fac Math Sci, Dept Pure Math, Tehran, Iran
基金:
美国国家科学基金会;
关键词:
Leavitt path algebra;
quasi-Baer ring;
graded ring;
corner skew Laurent polynomial ring;
quasi-Baer & lowast;
-ring;
K-THEORY;
IDEALS;
D O I:
10.1134/S0037446624030145
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We say that a graded ring (& lowast;-ring) Ris a graded quasi-Baer ring (graded quasi-Baer & lowast;-ring)if, for each graded idealIofR, the right annihilator ofIis generated by a homogeneous idempotent(projection). We prove that a Leavitt path algebra is quasi-Baer (quasi-Baer & lowast;) if and only if it is gradedquasi-Baer (graded quasi-Baer & lowast;). We show that a Leavitt path algebra is quasi-Baer (quasi-Baer & lowast;)if its zero component is quasi-Baer (quasi-Baer & lowast;). However, we give some example that showing thatthe converse implication fails. Finally, we characterize the Leavitt path algebras that are quasi-Baer & lowast;-rings in terms of the properties of the underlying graph.
引用
收藏
页码:648 / 662
页数:15
相关论文