Quasi-Baer * -Ring Characterization of Leavitt Path Algebras

被引:0
|
作者
Ahmadi, M. [1 ]
Moussavi, A. [1 ]
机构
[1] Tarbiat Modares Univ, Fac Math Sci, Dept Pure Math, Tehran, Iran
基金
美国国家科学基金会;
关键词
Leavitt path algebra; quasi-Baer ring; graded ring; corner skew Laurent polynomial ring; quasi-Baer & lowast; -ring; K-THEORY; IDEALS;
D O I
10.1134/S0037446624030145
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We say that a graded ring (& lowast;-ring) Ris a graded quasi-Baer ring (graded quasi-Baer & lowast;-ring)if, for each graded idealIofR, the right annihilator ofIis generated by a homogeneous idempotent(projection). We prove that a Leavitt path algebra is quasi-Baer (quasi-Baer & lowast;) if and only if it is gradedquasi-Baer (graded quasi-Baer & lowast;). We show that a Leavitt path algebra is quasi-Baer (quasi-Baer & lowast;)if its zero component is quasi-Baer (quasi-Baer & lowast;). However, we give some example that showing thatthe converse implication fails. Finally, we characterize the Leavitt path algebras that are quasi-Baer & lowast;-rings in terms of the properties of the underlying graph.
引用
收藏
页码:648 / 662
页数:15
相关论文
共 50 条