Defining Brightness-Shape-Moisture Soil Parameters for Southern Africa From Hyperion Hyperspectral Imagery

被引:0
|
作者
Bonnet, Wessel [1 ,2 ]
Cho, Moses Azong [1 ,2 ]
Masemola, Cecilia [1 ,3 ]
机构
[1] CSIR, Precis Agr Res Grp, Adv Agr & Food, Tshwane, South Africa
[2] Univ Pretoria, Dept Plant & Soil Sci, ZA-0028 Pretoria, South Africa
[3] Univ KwaZulu Natal, Dept Geog, ZA-3201 Pietermaritzburg, South Africa
关键词
Soil; Atmospheric modeling; Mathematical models; Hyperspectral imaging; Biological system modeling; Absorption; Soil moisture; Africa; Hyperion; radiative transfer; soil properties; BIDIRECTIONAL REFLECTANCE SPECTROSCOPY; SPECTRAL REGION; REMOTE; MODEL; FLUORESCENCE; INVERSION; INDEXES; COVER;
D O I
10.1109/TGRS.2024.3446246
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
An effective methodology is needed to simulate soil spectra on a large scale. The brightness-shape-moisture (BSM) radiative transfer model (RTM) is used to simulate soil spectra for different semiarid and arid biomes within Southern Africa based on hyperspectral imagery obtained from the Hyperion satellite. Such simulation based on hyperspectral data is especially relevant in light of newer hyperspectral missions, such as Prisma providing ongoing data streams. In this particular study, Hyperion's data are cleaned using the SUREHYP procedure, segmented using the simple linear iterative clustering (SLIC) algorithm, filtered to exclude photosynthetic and senescent vegetation, and parameterized via a Hyperion band calibrated BSM model lookup table to obtain simulation parameter distributions for different biomes. This provides a means to better simulate soil spectra using each biome's obtained parameter distributions in the BSM forward model.
引用
收藏
页数:8
相关论文
共 9 条
  • [1] ESTIMATION OF SOIL MOISTURE FROM AIRBORNE HYPERSPECTRAL IMAGERY WITH SUPPORT VECTOR REGRESSION
    Stamenkovic, Jelena
    Tuia, Devis
    de Morsier, Frank
    Borgeaud, Maurice
    Thiran, Jean-Philippe
    2013 5TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2013,
  • [2] Comparison of Soil Moisture Content Retrieval Models Utilizing Hyperspectral Goniometer Data and Hyperspectral Imagery From an Unmanned Aerial System
    Nur, Nayma Binte
    Bachmann, Charles M.
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2023, 128 (06)
  • [3] Soil Hydraulic Parameters and Surface Soil Moisture of a Tilled Bare Soil Plot Inversely Derived from L-Band Brightness Temperatures
    Dimitrov, M.
    Vanderborght, J.
    Kostov, K. G.
    Jadoon, K. Z.
    Weihermueller, L.
    Jackson, T. J.
    Bindlish, R.
    Pachepsky, Y.
    Schwank, M.
    Vereecken, H.
    VADOSE ZONE JOURNAL, 2014, 13 (01)
  • [4] Mapping barrier island soil moisture using a radiative transfer model of hyperspectral imagery from an unmanned aerial system
    Eon, Rehman S.
    Bachmann, Charles M.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [5] Mapping barrier island soil moisture using a radiative transfer model of hyperspectral imagery from an unmanned aerial system
    Rehman S. Eon
    Charles M. Bachmann
    Scientific Reports, 11
  • [6] Land cover conversion and degradation analyses through coupled soil-plant biophysical parameters derived from hyperspectral EO-1 Hyperion
    Huete, AR
    Miura, T
    Gao, X
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (06): : 1268 - 1276
  • [7] ESTIMATION OF RADIATIVE TRANSFER PARAMETERS FOR SOIL MOISTURE RETRIEVAL FROM SMOS BRIGHTNESS TEMPERATURES - A SYNTHETIC 1D EXPERIMENT WITH THE PARTICLE FILTER
    Montzka, C.
    Hendricks-Franssen, H. -J.
    Drusch, M.
    Moradkhani, H.
    Weihermueller, L.
    Fernandez-Prieto, D.
    Bogena, H.
    Vanderborght, J.
    Vereecken, H.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 3101 - 3104
  • [8] Gaussian Process Modeling of In-Season Physiological Parameters of Spring Wheat Based on Airborne Imagery from Two Hyperspectral Cameras and Apparent Soil Electrical Conductivity
    Zelazny, Wiktor R.
    Kusnierek, Krzysztof
    Geipel, Jakob
    REMOTE SENSING, 2022, 14 (23)
  • [9] Defining and modeling the soil geochemical background of heavy metals from the Hengshi River watershed (southern China): Integrating EDA, stochastic simulation and magnetic parameters
    Zhou, Xu
    Xia, Beicheng
    JOURNAL OF HAZARDOUS MATERIALS, 2010, 180 (1-3) : 542 - 551