Comparing the performance of global, geographically weighted and ecologically weighted species distribution models for Scottish wildcats using GLM and Random Forest predictive modeling
被引:8
|
作者:
Cushman, S. A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oxford, Recanati Kaplan Ctr, Dept Biol, Wildlife Conservat Res Unit WildCRU, Tubney House,Abingdon Rd, Oxford OX13 5QL, EnglandUniv Oxford, Recanati Kaplan Ctr, Dept Biol, Wildlife Conservat Res Unit WildCRU, Tubney House,Abingdon Rd, Oxford OX13 5QL, England
Cushman, S. A.
[1
]
Kilshaw, K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oxford, Recanati Kaplan Ctr, Dept Biol, Wildlife Conservat Res Unit WildCRU, Tubney House,Abingdon Rd, Oxford OX13 5QL, EnglandUniv Oxford, Recanati Kaplan Ctr, Dept Biol, Wildlife Conservat Res Unit WildCRU, Tubney House,Abingdon Rd, Oxford OX13 5QL, England
Kilshaw, K.
[1
]
Campbell, R. D.
论文数: 0引用数: 0
h-index: 0
机构:
NatureScot, Perth PH1 3EW, ScotlandUniv Oxford, Recanati Kaplan Ctr, Dept Biol, Wildlife Conservat Res Unit WildCRU, Tubney House,Abingdon Rd, Oxford OX13 5QL, England
Campbell, R. D.
[2
]
Kaszta, Z.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oxford, Recanati Kaplan Ctr, Dept Biol, Wildlife Conservat Res Unit WildCRU, Tubney House,Abingdon Rd, Oxford OX13 5QL, EnglandUniv Oxford, Recanati Kaplan Ctr, Dept Biol, Wildlife Conservat Res Unit WildCRU, Tubney House,Abingdon Rd, Oxford OX13 5QL, England
Kaszta, Z.
[1
]
Gaywood, M.
论文数: 0引用数: 0
h-index: 0
机构:
NatureScot, Fodderty Way,Dingwall Business Pk, Dingwall IV15 9XB, ScotlandUniv Oxford, Recanati Kaplan Ctr, Dept Biol, Wildlife Conservat Res Unit WildCRU, Tubney House,Abingdon Rd, Oxford OX13 5QL, England
Gaywood, M.
[3
]
Macdonald, D. W.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oxford, Recanati Kaplan Ctr, Dept Biol, Wildlife Conservat Res Unit WildCRU, Tubney House,Abingdon Rd, Oxford OX13 5QL, EnglandUniv Oxford, Recanati Kaplan Ctr, Dept Biol, Wildlife Conservat Res Unit WildCRU, Tubney House,Abingdon Rd, Oxford OX13 5QL, England
Macdonald, D. W.
[1
]
机构:
[1] Univ Oxford, Recanati Kaplan Ctr, Dept Biol, Wildlife Conservat Res Unit WildCRU, Tubney House,Abingdon Rd, Oxford OX13 5QL, England
[2] NatureScot, Perth PH1 3EW, Scotland
[3] NatureScot, Fodderty Way,Dingwall Business Pk, Dingwall IV15 9XB, Scotland
Scotish wildcat;
Limiting factors;
Nonstationary;
Species distribution modeling;
Habitat modeling;
MULTISCALE HABITAT SELECTION;
LANDSCAPE GENETICS;
EUROPEAN WILDCAT;
SCALE;
ECOLOGY;
MARTEN;
CONNECTIVITY;
CONSERVATION;
REPLICATION;
SPACE;
D O I:
10.1016/j.ecolmodel.2024.110691
中图分类号:
Q14 [生态学(生物生态学)];
学科分类号:
071012 ;
0713 ;
摘要:
Species distribution modeling has emerged as a foundational method to predict occurrence and suitability of species in relation to environmental variables to advance ecological understanding and guide conservation planning. Recent research, however, has shown that species-environmental relationships and habitat model predictions are often nonstationary in space, time and ecological context. This calls into question modeling approaches that assume a global, stationary ecological realized niche and use predictive modeling to describe it. This paper explores this issue by comparing the performance of predictive models for wildcat hybrid occurrence based on (1) global pooled data across individuals, (2) geographically weighted aggregation of individual models, (3) ecologically weighted aggregation of individual models, and (4) combinations of global, geographical and ecological weighting. Our study system included GPS telemetry data from 14 individual wildcat hybrids across Scotland. We developed predictive models both using Generalized Linear Models (GLM) and Random Forest machine learning to compare the performance of these differing algorithms and how they compare in stationary and nonstationary analyses. We validated the predicted models in four different ways. First, we used independent hold-out data from the 14 collared wildcat hybrids. Second, we used data from 8 additional GPS collared wildcat hybrids from a previous study that were not included in the training sample. Third, we used sightings data sent in by the public and researchers and validated by expert opinion. Fourth, we used data collected by camera trap surveys between 2012 - 2021 from various sources to produce a combined camera trap dataset showing where wildcats and wildcat hybrids had been detected. Our results show that validation using hold-out data from the individuals used to train the model provides highly biased assessment of true model performance in other locations, with Random Forest in particular appearing to perform exceptionally (and inaccurately) well when validated by data from the same individuals used to train the models. Very different results were obtained when the models were validated using independent data from the three other sources. Each of these three independent validation data sets gave a different result in terms of the best overall model. The average of independent validation across these three validation datasets suggested that the best overall model produced for potential wildcat occurrence and habitat suitability was obtained by an ensemble average of the global Generalized Linear Model (GLM) and Random Forest models with the ecologically weighted GLM and Random Forest models. This suggests that the debate over whether which of GLM vs machine learning approaches is superior or whether global vs aggregated nonstationary modeling is superior may be a false choice. The results presented here show that the best prediction applies a combination of all of these approaches in an ensemble modeling framework.
机构:
Tarbiat Modares Univ, Dept Geomorphol, Tehran 3658117994, IranTarbiat Modares Univ, Dept Geomorphol, Tehran 3658117994, Iran
Arabameri, Alireza
Pradhan, Biswajeet
论文数: 0引用数: 0
h-index: 0
机构:
Univ Technol Sydney, Fac Engn & IT, CAMGIS, Ultimo, NSW 2007, Australia
Sejong Univ, Dept Energy & Mineral Resources Engn, 209 Neungdong Ro, Seoul 05006, South KoreaTarbiat Modares Univ, Dept Geomorphol, Tehran 3658117994, Iran
Pradhan, Biswajeet
Rezaei, Khalil
论文数: 0引用数: 0
h-index: 0
机构:
Kharazmi Univ, Fac Earth Sci, Tehran 1491115719, IranTarbiat Modares Univ, Dept Geomorphol, Tehran 3658117994, Iran
机构:
Inje Univ, Coll AI Convergence, Dept Med Big Data, Gimhae 50834, Gyeonsangnamdo, South KoreaInje Univ, Coll AI Convergence, Dept Med Big Data, Gimhae 50834, Gyeonsangnamdo, South Korea
机构:
Natl Inst Space Res INPE, Div Remote Sensing, Sao Jose Dos Campos, BrazilNatl Inst Space Res INPE, Div Remote Sensing, Sao Jose Dos Campos, Brazil
Sothe, C.
De Almeida, C. M.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Space Res INPE, Div Remote Sensing, Sao Jose Dos Campos, BrazilNatl Inst Space Res INPE, Div Remote Sensing, Sao Jose Dos Campos, Brazil
De Almeida, C. M.
论文数: 引用数:
h-index:
机构:
Schimalski, M. B.
La Rosa, L. E. C.
论文数: 0引用数: 0
h-index: 0
机构:
Pontifical Catholic Univ Rio de Janeiro PUC, Dept Elect Engn, Rio De Janeiro, BrazilNatl Inst Space Res INPE, Div Remote Sensing, Sao Jose Dos Campos, Brazil
La Rosa, L. E. C.
Castro, J. D. B.
论文数: 0引用数: 0
h-index: 0
机构:
Pontifical Catholic Univ Rio de Janeiro PUC, Dept Elect Engn, Rio De Janeiro, BrazilNatl Inst Space Res INPE, Div Remote Sensing, Sao Jose Dos Campos, Brazil
Castro, J. D. B.
Feitosa, R. Q.
论文数: 0引用数: 0
h-index: 0
机构:
Pontifical Catholic Univ Rio de Janeiro PUC, Dept Elect Engn, Rio De Janeiro, BrazilNatl Inst Space Res INPE, Div Remote Sensing, Sao Jose Dos Campos, Brazil
Feitosa, R. Q.
Dalponte, M.
论文数: 0引用数: 0
h-index: 0
机构:
Res & Innovat Ctr, Dept Sustainable Agroecosyst & Bioresources, San Michele All Adige, ItalyNatl Inst Space Res INPE, Div Remote Sensing, Sao Jose Dos Campos, Brazil
Dalponte, M.
论文数: 引用数:
h-index:
机构:
Lima, C. L.
Liesenberg, V.
论文数: 0引用数: 0
h-index: 0
机构:
Santa Catarina State Univ UDESC, Dept Forest Engn, Lages, SC, BrazilNatl Inst Space Res INPE, Div Remote Sensing, Sao Jose Dos Campos, Brazil
Liesenberg, V.
Miyoshi, G. T.
论文数: 0引用数: 0
h-index: 0
机构:
Sao Paulo State Univ UNESP, Dept Cartog, Presidente Prudente, BrazilNatl Inst Space Res INPE, Div Remote Sensing, Sao Jose Dos Campos, Brazil
Miyoshi, G. T.
Tommaselli, A. M. G.
论文数: 0引用数: 0
h-index: 0
机构:
Sao Paulo State Univ UNESP, Dept Cartog, Presidente Prudente, BrazilNatl Inst Space Res INPE, Div Remote Sensing, Sao Jose Dos Campos, Brazil