Weak Harnack inequality for doubly non-linear equations of slow diffusion type

被引:0
|
作者
Baeuerlein, Fabian [1 ]
机构
[1] Univ Salzburg, Fachbereich Math, Hellbrunner Str 34, A-5020 Salzburg, Austria
基金
奥地利科学基金会;
关键词
Doubly non-linear equations; Super-solutions; Weak Harnack inequality; Expansion of positivity; WAVE APPROXIMATION; SUPERSOLUTIONS; MINIMIZERS; REGULARITY; BEHAVIOR;
D O I
10.1016/j.jmaa.2024.128541
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider non-negative weak super-solutions u : Omega(T) -> R->= 0 to the doubly nonlinear equation partial derivative(t) (vertical bar u vertical bar(q-1)u) - divA( x, t, u, Du) = 0 in Omega(T) = Omega x (0, T], where Omega is an bounded open set in R-N for N >= 2, T > 0 and q is a non-negative parameter. Furthermore, the vector field Asatisfies standard p-growth assumptions for some p > 1. The main novelty of this paper is that we establish the weak Harnack inequality in the entire slow diffusion regime p - q - 1 > 0. Additionally, we only require that the weak super-solution uis located in the function space C-loc(0) [0, T]; L-loc(q+1) loc (Omega) boolean AND n L-loc(p) (0, T; W-loc(1,p) (Omega)). (c) 2024 The Author. Published by Elsevier Inc.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] Harnack's inequality for doubly nonlinear equations of slow diffusion type
    Boegelein, Verena
    Heran, Andreas
    Schaetzler, Leah
    Singer, Thomas
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (06)
  • [2] Harnack’s inequality for doubly nonlinear equations of slow diffusion type
    Verena Bögelein
    Andreas Heran
    Leah Schätzler
    Thomas Singer
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [3] Harnack inequality and continuity of weak solutions for doubly degenerate elliptic equations
    Di Fazio, G.
    Fanciullo, M. S.
    Zamboni, P.
    MATHEMATISCHE ZEITSCHRIFT, 2019, 292 (3-4) : 1325 - 1336
  • [4] Harnack inequality and continuity of weak solutions for doubly degenerate elliptic equations
    G. Di Fazio
    M. S. Fanciullo
    P. Zamboni
    Mathematische Zeitschrift, 2019, 292 : 1325 - 1336
  • [5] HARNACK TYPE INEQUALITY FOR SOLUTIONS TO NON LINEAR ELLIPTICAL EQUATIONS OF HIGHER ORDER
    D'Asero, Salvatore
    MATEMATICHE, 2005, 60 (02): : 451 - 454
  • [6] ON THE WEAK HARNACK INEQUALITY FOR QUASI-LINEAR ELLIPTIC-EQUATIONS
    DAVYDOVA, LV
    MATHEMATICS OF THE USSR-SBORNIK, 1984, 125 (3-4): : 335 - 349
  • [7] A backward in time Harnack inequality for non-negative solutions to fully non-linear parabolic equations
    Nystrom, Kaj
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2014, 5 (01): : 1 - 14
  • [8] On the parabolic Harnack inequality for non-local diffusion equations
    Dier, Dominik
    Kemppainen, Jukka
    Siljander, Juhana
    Zacher, Rico
    MATHEMATISCHE ZEITSCHRIFT, 2020, 295 (3-4) : 1751 - 1769
  • [9] On the parabolic Harnack inequality for non-local diffusion equations
    Dominik Dier
    Jukka Kemppainen
    Juhana Siljander
    Rico Zacher
    Mathematische Zeitschrift, 2020, 295 : 1751 - 1769
  • [10] Harnack-type inequality for linear fractional stochastic equations
    Boufoussi, Brahim
    Mouchtabih, Soufiane
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2020, 28 (04) : 281 - 290