Cnn-trans model: A parallel dual-branch network for fundus image classification

被引:2
|
作者
Liu, Shuxian [1 ]
Wang, Wei [2 ]
Deng, Le [1 ]
Xu, Huan [1 ]
机构
[1] Xinjiang Univ, Sch Informat Sci & Engn, Urumqi 830017, Peoples R China
[2] Xinjiang Teachers Coll, Sch Informat Sci & Technol, Urumqi 830043, Peoples R China
基金
中国国家自然科学基金;
关键词
Fundus image classification; Parallel dual branch; Attention mechanism; Feature fusion; CNN;
D O I
10.1016/j.bspc.2024.106621
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The existence of fundus diseases not only endangers people's vision, but also brings serious economic burden to the society. Fundus images are an objective and standard basis for the diagnosis of fundus diseases. With the continuous advancement of computer science, deep learning methods dominated by convolutional neural networks (CNN) have been widely used in fundus image classification. However, the current CNN-based fundus image classification research still has a lot of room for improvement: CNN cannot effectively avoid the interference of repeated background information and has limited ability to model the whole world. In response to the above findings, this paper proposes the CNN-Trans model. The CNN-Trans model is a parallel dual-branch network, which is the two branches of CNN-LSTM and Vision Transform (ViT). The CNN-LSTM branch uses Xception after transfer learning. As the original feature extractor, LSTM is responsible for dealing with the gradient disappearance problem in neural network iterations before the classification head, and then introduces a new type of lightweight attention mechanism between Xception and LSTM: Coordinate Attention, so as to emphasize the key information related to classification and suppress the less useful repeated background information; while the self-attention mechanism in the ViT branch is not limited by local interactions, it can establish long-distance dependence on the target and extract global features. Finally, the concatenation (Concat) operation is used to fuse the features of the two branches. The local features extracted by the CNN-LSTM branch and the global features extracted by the ViT branch form complementary advantages. After feature fusion, more comprehensive image feature information is sent to the to the classification layer. Finally, after a large number of experimental tests and comparisons, the results show that: the CNN-Trans model achieved an accuracy of 80.68% on the fundus image classification task, and the CNN-Trans model has a classification that is comparable to the state-of-the-art methods. performance..
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Dual-Branch Attention-Assisted CNN for Hyperspectral Image Classification
    Huang, Wei
    Zhao, Zhuobing
    Sun, Le
    Ju, Ming
    REMOTE SENSING, 2022, 14 (23)
  • [2] Deep Image Classification Model Based on Dual-Branch
    Chen, Haoyu
    Lv, Qi
    Zhou, Wei
    Zheng, Jiang
    Wang, Jian
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, VOL. 1, 2022, 878 : 636 - 643
  • [3] A Dual-Branch Multiscale Transformer Network for Hyperspectral Image Classification
    Shi, Cuiping
    Yue, Shuheng
    Wang, Liguo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 20
  • [4] Semi-supervised Dual-Branch Network for image classification
    Chen, Jiaming
    Yang, Meng
    Gao, Guangwei
    KNOWLEDGE-BASED SYSTEMS, 2020, 197
  • [5] Dual-Branch CNN Incorporating Multiscale SVD Profile for PolSAR Image Classification
    Das, Nabajyoti
    Bortiew, Amos
    Patra, Swarnajyoti
    Bruzzone, Lorenzo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [6] A dual-branch and dual attention transformer and CNN hybrid network for ultrasound image segmentation
    Zhang, Chong
    Wang, Lingtong
    Wei, Guohui
    Kong, Zhiyong
    Qiu, Min
    FRONTIERS IN PHYSIOLOGY, 2024, 15
  • [7] Classification of hyperspectral image based on dual-branch feature interaction network
    Li, Chenming
    Wang, Xiangyi
    Chen, Zhonghao
    Gao, Hongmin
    Xu, Shufang
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (09) : 3258 - 3279
  • [8] Dual-Branch Subpixel-Guided Network for Hyperspectral Image Classification
    Han, Zhu
    Yang, Jin
    Gao, Lianru
    Zeng, Zhiqiang
    Zhang, Bing
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [9] Dual-Branch Spectral–Spatial Attention Network for Hyperspectral Image Classification
    Zhao, Jinling
    Wang, Jiajie
    Ruan, Chao
    Dong, Yingying
    Huang, Linsheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 18
  • [10] Parallel Dual-Branch Polyp Segmentation Network
    Sun, Kunjie
    Cheng, Li
    Yuan, Haiwen
    Li, Xuan
    IEEE ACCESS, 2024, 12 : 192051 - 192061