Kaczmarz-type methods for solving matrix equations

被引:0
|
作者
Li, Weiguo [1 ]
Bao, Wendi [1 ]
Xing, Lili [1 ]
Guo, Zhiwei [1 ]
机构
[1] China Univ Petr, Coll Sci, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
Kaczmarz method; coordinate-descent method; convergence; matrix equation; inverse; CONVERGENCE-RATES;
D O I
10.1080/00207160.2024.2372420
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, several Kaczmarz-type numerical methods for solving the matrix equations AX = B and XA = C are proposed, where the coefficient matrix A may be full rank or deficient rank. These methods are iterative methods without matrix multiplication. Theoretically, the convergence of these methods is proved. The numerical results show that these methods are more efficient than iterative methods involving matrix multiplication for high-dimensional matrices.
引用
收藏
页码:708 / 731
页数:24
相关论文
共 50 条
  • [1] On greedy randomized Kaczmarz-type methods for solving the system of tensor equations
    Wang, Jungang
    Li, Zexi
    Ran, Yuhong
    Li, Yiqiang
    APPLIED MATHEMATICS LETTERS, 2024, 158
  • [2] CONVERGENCE RATES FOR KACZMARZ-TYPE REGULARIZATION METHODS
    Kindermann, Stefan
    Leitao, Antonio
    INVERSE PROBLEMS AND IMAGING, 2014, 8 (01) : 149 - 172
  • [3] The extensions of convergence rates of Kaczmarz-type methods
    Kang, Chuan-gang
    Zhou, Heng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 382 (382)
  • [4] Convergence analysis for Kaczmarz-type methods in a Hilbert space framework
    Oswald, Peter
    Zhou, Weiqi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 478 : 131 - 161
  • [5] Convergence rates for Kaczmarz-type algorithms
    Popa, Constantin
    NUMERICAL ALGORITHMS, 2018, 79 (01) : 1 - 17
  • [6] Convergence rates for Kaczmarz-type algorithms
    Constantin Popa
    Numerical Algorithms, 2018, 79 : 1 - 17
  • [7] Correction to: convergence rates for Kaczmarz-type algorithms
    Constantin Popa
    Numerical Algorithms, 2019, 82 : 1117 - 1120
  • [8] On maximum residual nonlinear Kaczmarz-type algorithms for large nonlinear systems of equations?
    Zhang, Jianhua
    Wang, Yuqing
    Zhao, Jing
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 425
  • [9] On convergence rates of Kaczmarz-type methods with different selection rules of working rows
    Bai, Zhong-Zhi
    Wang, Lu
    APPLIED NUMERICAL MATHEMATICS, 2023, 186 (289-319) : 289 - 319
  • [10] Developing Kaczmarz method for solving Sylvester matrix equations
    Shafiei, Soheila Ghoroghi
    Hajarian, Masoud
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2022, 359 (16): : 8991 - 9005