Limitations of Information-Theoretic Generalization Bounds for Gradient Descent Methods in Stochastic Convex Optimization

被引:0
|
作者
Haghifam, Mahdi [1 ,2 ]
Rodriguez-Galvez, Borja [3 ]
Thobaben, Ragnar [3 ]
Skoglund, Mikael [3 ]
Roy, Daniel M. [1 ,2 ]
Dziugaite, Gintare Karolina [4 ,5 ,6 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
[2] Vector Inst, Toronto, ON, Canada
[3] KTH Royal Inst Technol, Stockholm, Sweden
[4] Google Res, Toronto, ON, Canada
[5] Mila, Montreal, PQ, Canada
[6] McGill, Montreal, PQ, Canada
基金
瑞典研究理事会; 加拿大自然科学与工程研究理事会;
关键词
STABILITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To date, no "information-theoretic" frameworks for reasoning about generalization error have been shown to establish minimax rates for gradient descent in the setting of stochastic convex optimization. In this work, we consider the prospect of establishing such rates via several existing information-theoretic frameworks: input-output mutual information bounds, conditional mutual information bounds and variants, PAC-Bayes bounds, and recent conditional variants thereof. We prove that none of these bounds are able to establish minimax rates. We then consider a common tactic employed in studying gradient methods, whereby the final iterate is corrupted by Gaussian noise, producing a noisy "surrogate" algorithm. We prove that minimax rates cannot be established via the analysis of such surrogates. Our results suggest that new ideas are required to analyze gradient descent using information-theoretic techniques.
引用
收藏
页码:663 / 706
页数:44
相关论文
共 50 条
  • [1] Information-Theoretic Lower Bounds on the Oracle Complexity of Stochastic Convex Optimization
    Agarwal, Alekh
    Bartlett, Peter L.
    Ravikumar, Pradeep
    Wainwright, Martin J.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (05) : 3235 - 3249
  • [2] Stochastic chaining and strengthened information-theoretic generalization bounds
    Zhou, Ruida
    Tian, Chao
    Liu, Tie
    JOURNAL OF THE FRANKLIN INSTITUTE, 2023, 360 (06) : 4114 - 4134
  • [3] Formal limitations of sample-wise information-theoretic generalization bounds
    Harutyunyan, Hrayr
    Steeg, Greg Ver
    Galstyan, Aram
    2022 IEEE INFORMATION THEORY WORKSHOP (ITW), 2022, : 440 - 445
  • [4] Information-theoretic lower bounds for convex optimization with erroneous oracles
    Singer, Yaron
    Vondrak, Jan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [5] Strengthened Information-theoretic Bounds on the Generalization Error
    Issa, Ibrahim
    Esposito, Amedeo Roberto
    Gastpar, Michael
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 582 - 586
  • [6] Information-theoretic lower bounds for zero-order stochastic gradient estimation
    Alabdulkareem, Abdulrahman
    Honorio, Jean
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 2316 - 2321
  • [7] Information-Theoretic Generalization Bounds for Batch Reinforcement Learning
    Liu, Xingtu
    ENTROPY, 2024, 26 (11)
  • [8] Generalization Bounds for Label Noise Stochastic Gradient Descent
    Huh, Jung Eun
    Rebeschini, Patrick
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [9] Information-theoretic distance measures and a generalization of stochastic resonance
    Robinson, JWC
    Asraf, DE
    Bulsara, AR
    Inchiosa, ME
    PHYSICAL REVIEW LETTERS, 1998, 81 (14) : 2850 - 2853
  • [10] Information-Theoretic Bounds on the Moments of the Generalization Error of Learning Algorithms
    Aminian, Gholamali
    Toni, Laura
    Rodrigues, Miguel R. D.
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 682 - 687