Broadband and High-Flatness Balanced Homodyne Detector for Continuous-Variable Quantum Random Number Generation

被引:0
|
作者
Deng Juan [1 ,2 ]
Guo Yangqiang [1 ,2 ]
Lin Hong [1 ]
Lin Jiehong [1 ]
Guo Xiaomin [1 ]
机构
[1] Taiyuan Univ Technol, Coll Phys, Key Lab Adv Transducers & Intelligent Control Sys, Minist Educ, Taiyuan 030024, Shanxi, Peoples R China
[2] State Key Lab Cryptol, Beijing 100878, Peoples R China
关键词
quantum optics; quantum random number generator; balanced homodyne detector; high bandwidth and flatness; distributed parameter circuit analysis; STATE;
D O I
10.3788/LOP231233
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study presents a high-gain broadband balanced homodyne detector, utilizing cascade amplification to generate continuous-variable quantum random numbers. The innovative approach of distributed parameter circuit analysis and optimization simulation is introduced into the circuit design of the broadband balanced homodyne detector. The objective is to enhance the transmission attributes of the ultra-high-frequency circuit. This is realized by optimally combining different elements and selecting key electronic components, guided by system stability indicators. Hence, a balanced homodyne detector was developed with a bandwidth surpassing 1. 65 GHz and gain flatness of +/- 2 dB within the 0. 2-930 MHz range. This study proposes a novel design perspective for broadband balanced homodyne detectors. The enhanced features of the detectors facilitate a more efficient derivation of continuous-variable quantum state random entropy sources, thereby propelling the rate enhancement and practical advancement of continuous-variable quantum random number generators.
引用
收藏
页数:10
相关论文
共 39 条
  • [1] [Anonymous], 2021, computerJ. Quantum, V5, P392
  • [2] Bourassa J E, Blueprint for a scalable photonic fault-tolerant quantum
  • [3] A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution
    Chi, Yue-Meng
    Qi, Bing
    Zhu, Wen
    Qian, Li
    Lo, Hoi-Kwong
    Youn, Sun-Hyun
    Lvovsky, A. I.
    Tian, Liang
    [J]. NEW JOURNAL OF PHYSICS, 2011, 13
  • [4] Certified Quantum Random Numbers from Untrusted Light
    Drahi, David
    Walk, Nathan
    Hoban, Matty J.
    Fedorov, Aleksey K.
    Shakhovoy, Roman
    Feimov, Akky
    Kurochkin, Yury
    Kolthammer, W. Steven
    Nunn, Joshua
    Barrett, Jonathan
    Walmsley, Ian A.
    [J]. PHYSICAL REVIEW X, 2020, 10 (04):
  • [5] High-speed time-domain balanced homodyne detector for nanosecond optical field applications
    Du, Shanna
    Li, Zongyang
    Liu, Wenyuan
    Wang, Xuyang
    Li, Yongmin
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2018, 35 (02) : 481 - 486
  • [6] Fercher AF, 2003, REP PROG PHYS, V66, P239, DOI [10.1088/0034-4885/66/2/204, 10.2184/lsj.31.635]
  • [7] A generator for unique quantum random numbers based on vacuum states
    Gabriel, Christian
    Wittmann, Christoffer
    Sych, Denis
    Dong, Ruifang
    Mauerer, Wolfgang
    Andersen, Ulrik L.
    Marquardt, Christoph
    Leuchs, Gerd
    [J]. NATURE PHOTONICS, 2010, 4 (10) : 711 - 715
  • [8] Homodyne-based quantum random number generator at 2.9 Gbps secure against quantum side-information
    Gehring, Tobias
    Lupo, Cosmo
    Kordts, Arne
    Nikolic, Dino Solar
    Jain, Nitin
    Rydberg, Tobias
    Pedersen, Thomas B.
    Pirandola, Stefano
    Andersen, Ulrik L.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [9] Quantum key distribution using gaussian-modulated coherent states
    Grosshans, F
    Van Assche, G
    Wenger, J
    Brouri, R
    Cerf, NJ
    Grangier, P
    [J]. NATURE, 2003, 421 (6920) : 238 - 241
  • [10] Guo X M, 2021, Quantum Physics, V2107, P14177