MRI and RNA-seq fusion for prediction of pathological response to neoadjuvant chemotherapy in breast cancer

被引:1
|
作者
Li, Hui [1 ,2 ]
Zhao, Yuanshen [2 ]
Duan, Jingxian [2 ]
Gu, Jia [3 ]
Liu, Zaiyi [4 ]
Zhang, Huailing [5 ]
Zhang, Yuqin [6 ]
Li, Zhi-Cheng [2 ,7 ,8 ,9 ]
机构
[1] Guangdong Med Univ, Sch Med Technol, Dongguan, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Inst Biomed & Hlth Engn, Shenzhen, Peoples R China
[3] City Univ Macau, Fac Data Sci, Ave Padre Tomas Pereira, Macau, Peoples R China
[4] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Guangdong Prov Key Lab Clin Pharmacol, Guangzhou, Peoples R China
[5] Guangdong Med Univ, Sch Biomed Engn, Dongguan, Peoples R China
[6] Ningbo Univ, Dept Radiol, Affiliated Lihuili Hosp, Ningbo 315000, Peoples R China
[7] Natl Innovat Ctr Adv Med Devices, Shenzhen, Peoples R China
[8] Shenzhen United Imaging Res Inst Innovat Med Equi, Shenzhen, Peoples R China
[9] Chinese Acad Sci, Key Lab Biomed Imaging Sci & Syst, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Breast cancer; Neoadjuvant chemotherapy; Multi-parametric MRI; Pathological complete response; Attention mechanism; Deep learning; BIOMARKERS;
D O I
10.1016/j.displa.2024.102698
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate prediction of the pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) is crucial for precise treatment of breast cancer. However, current studies mainly rely on single-modal data, with limited studies focusing on multimodal data. In this study, we developed and validated a deep learning-based multimodal fusion model that predicts the response of breast tumor to NAC by integrating multi-parametric magnetic resonance imaging (MRI) and RNA sequencing (RNA-seq) information related to breast tumor. For comparison, we separately built four single-modal models with either MR images or RNA-seq data. Moreover, our approach has demonstrated better performance in integrating MR images and RNA-seq data. The average accuracy is 90.20% and area under the receiver operating characteristic curve (AUC) is 0.936 for our model. These findings indicate that our proposed approach has achieved higher accuracy in predicting the pathological response to NAC.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Prediction of pathological response to neoadjuvant chemotherapy in breast cancer patients by imaging
    Kaise, Hiroshi
    Shimizu, Fumika
    Akazawa, Kohei
    Hasegawa, Yoshie
    Horiguchi, Jun
    Miura, Daishu
    Kohno, Norio
    Ishikawa, Takashi
    JOURNAL OF SURGICAL RESEARCH, 2018, 225 : 175 - 180
  • [2] Neoadjuvant chemotherapy in breast cancer - prediction of pathological response by FDG PET
    Quercia, S.
    Zamagni, C.
    Bernardi, A.
    Fanti, S.
    Santini, D.
    Massari, F.
    Rosati, M.
    Cacciari, N.
    Taffurelli, M.
    Martoni, A. A.
    EJC SUPPLEMENTS, 2008, 6 (07): : 62 - 62
  • [3] Breast cancer: influence of tumour volume estimation method at MRI on prediction of pathological response to neoadjuvant chemotherapy
    Henderson, Shelley A.
    Gowdh, Nazleen Muhammad
    Purdie, Colin A.
    Jordan, Lee B.
    Evans, Andrew
    Brunton, Tracy
    Thompson, Alastair M.
    Vinnicombe, Sarah
    BRITISH JOURNAL OF RADIOLOGY, 2018, 91 (1087):
  • [4] Radiomics of MRI for the Prediction of the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer Patients: A Single Referral Centre Analysis
    Pesapane, Filippo
    Rotili, Anna
    Botta, Francesca
    Raimondi, Sara
    Bianchini, Linda
    Corso, Federica
    Ferrari, Federica
    Penco, Silvia
    Nicosia, Luca
    Bozzini, Anna
    Pizzamiglio, Maria
    Origgi, Daniela
    Cremonesi, Marta
    Cassano, Enrico
    CANCERS, 2021, 13 (17)
  • [5] Contrast-free MRI quantitative parameters for early prediction of pathological response to neoadjuvant chemotherapy in breast cancer
    Siyao Du
    Si Gao
    Ruimeng Zhao
    Hongbo Liu
    Yan Wang
    Xixun Qi
    Shu Li
    Jibin Cao
    Lina Zhang
    European Radiology, 2022, 32 : 5759 - 5772
  • [6] Contrast-free MRI quantitative parameters for early prediction of pathological response to neoadjuvant chemotherapy in breast cancer
    Du, Siyao
    Gao, Si
    Zhao, Ruimeng
    Liu, Hongbo
    Wang, Yan
    Qi, Xixun
    Li, Shu
    Cao, Jibin
    Zhang, Lina
    EUROPEAN RADIOLOGY, 2022, 32 (08) : 5759 - 5772
  • [7] MRI in diagnosis of pathological complete response in breast cancer patients after neoadjuvant chemotherapy
    Li, Yan-Ling
    Zhang, Xiao-Peng
    Li, Jie
    Cao, Kun
    Cui, Yong
    Li, Xiao-Ting
    Sun, Ying-Shi
    EUROPEAN JOURNAL OF RADIOLOGY, 2015, 84 (02) : 242 - 249
  • [8] Prediction of neoadjuvant chemotherapy response in breast cancer
    Izquierdo, M.
    Rodriguez, I.
    Tresserra, F.
    Maria, G.
    Baulies, S.
    Ara, C.
    Fabregas, R.
    EUROPEAN JOURNAL OF CANCER, 2018, 92 : S95 - S95
  • [9] Prediction of neoadjuvant chemotherapy response in breast cancer
    Izquierdo, M.
    Rodriguez, I.
    Tresserra, F.
    Baulies, S.
    Ara, C.
    Fabregas, R.
    BREAST, 2017, 32 : S79 - S79
  • [10] PREDICTION OF NEOADJUVANT CHEMOTHERAPY RESPONSE IN BREAST CANCER
    Myllys, Maiju
    EXCLI JOURNAL, 2021, 20 : 625 - 627