DFD-SLAM: Visual SLAM with Deep Features in Dynamic Environment

被引:1
|
作者
Qian, Wei [1 ]
Peng, Jiansheng [1 ,2 ,3 ,4 ]
Zhang, Hongyu [1 ]
机构
[1] Guangxi Univ Sci & Technol, Coll Automat, Liuzhou 545000, Peoples R China
[2] Hechi Univ, Dept Artificial Intelligence & Mfg, Hechi 547000, Peoples R China
[3] Hechi Univ, Educ Dept Guangxi Zhuang Autonomous Reg, Key Lab AI & Informat Proc, Hechi 547000, Peoples R China
[4] Hechi Univ, Sch Chem & Bioengn, Guangxi Key Lab Sericulture Ecol & Appl Intelligen, Hechi 546300, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 11期
基金
中国国家自然科学基金;
关键词
visual SLAM; deep features; dynamic SLAM; YOLOv8; HFNet; VERSATILE;
D O I
10.3390/app14114949
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Visual SLAM technology is one of the important technologies for mobile robots. Existing feature-based visual SLAM techniques suffer from tracking and loop closure performance degradation in complex environments. We propose the DFD-SLAM system to ensure outstanding accuracy and robustness across diverse environments. Initially, building on the ORB-SLAM3 system, we replace the original feature extraction component with the HFNet network and introduce a frame rotation estimation method. This method determines the rotation angles between consecutive frames to select superior local descriptors. Furthermore, we utilize CNN-extracted global descriptors to replace the bag-of-words approach. Subsequently, we develop a precise removal strategy, combining semantic information from YOLOv8 to accurately eliminate dynamic feature points. In the TUM-VI dataset, DFD-SLAM shows an improvement over ORB-SLAM3 of 29.24% in the corridor sequences, 40.07% in the magistrale sequences, 28.75% in the room sequences, and 35.26% in the slides sequences. In the TUM-RGBD dataset, DFD-SLAM demonstrates a 91.57% improvement over ORB-SLAM3 in highly dynamic scenarios. This demonstrates the effectiveness of our approach.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Visual SLAM method for dynamic environment based on deep learning image features
    Liu D.
    Yu T.
    Cong M.
    Du Y.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52 (06): : 156 - 163
  • [2] Visual SLAM algorithm in dynamic environment based on deep learning
    Yu, Yingjie
    Chen, Shuai
    Yang, Xinpeng
    Xu, Changzhen
    Zhang, Sen
    Xiao, Wendong
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2025, 52 (01): : 28 - 35
  • [3] Review of Visual SLAM in Dynamic Environment
    Wang K.
    Yao X.
    Huang Y.
    Liu M.
    Lu Y.
    Jiqiren/Robot, 2021, 43 (06): : 715 - 732
  • [4] Semantic visual SLAM in dynamic environment
    Wen, Shuhuan
    Li, Pengjiang
    Zhao, Yongjie
    Zhang, Hong
    Sun, Fuchun
    Wang, Zhe
    AUTONOMOUS ROBOTS, 2021, 45 (04) : 493 - 504
  • [5] Semantic visual SLAM in dynamic environment
    Shuhuan Wen
    Pengjiang Li
    Yongjie Zhao
    Hong Zhang
    Fuchun Sun
    Zhe Wang
    Autonomous Robots, 2021, 45 : 493 - 504
  • [6] PLDS-SLAM: Point and Line Features SLAM in Dynamic Environment
    Yuan, Chaofeng
    Xu, Yuelei
    Zhou, Qing
    REMOTE SENSING, 2023, 15 (07)
  • [7] Dynamic visual SLAM based on probability screening and weighting for deep features
    Fu, Fuji
    Yang, Jinfu
    Ma, Jiaqi
    Zhang, Jiahui
    MEASUREMENT, 2024, 236
  • [8] DOA-SLAM: An Efficient Stereo Visual SLAM System in Dynamic Environment
    Zhaoqian Jia
    Yixiao Ma
    Junwen Lai
    Zhiguo Wang
    International Journal of Control, Automation and Systems, 2025, 23 (4) : 1181 - 1198
  • [9] A Robust Visual SLAM System in Dynamic Environment
    Ma, Huajun
    Qin, Yijun
    Duan, Shukai
    Wang, Lidan
    ADVANCES IN NEURAL NETWORKS-ISNN 2024, 2024, 14827 : 248 - 257
  • [10] Dynamic SLAM: A Visual SLAM in Outdoor Dynamic Scenes
    Wen, Shuhuan
    Li, Xiongfei
    Liu, Xin
    Li, Jiaqi
    Tao, Sheng
    Long, Yidan
    Qiu, Tony
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72