A Reinforcement Learning-Based Automatic Video Editing Method Using Pre-trained Vision-Language Model

被引:0
|
作者
Hu, Panwen [1 ]
Xiao, Nan [1 ]
Li, Feifei [1 ]
Chen, Yongquan [2 ]
Huang, Rui [1 ]
机构
[1] Chinese Univ Hong Kong, SSE, Shenzhen, Peoples R China
[2] Chinese Univ Hong Kong, AIRS, Shenzhen, Peoples R China
关键词
video editing; video representation; reinforcement learning; BROADCAST; CAPTURE; FILM;
D O I
10.1145/3581783.3611878
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this era of videos, automatic video editing techniques attract more and more attention from industry and academia since they can reduce workloads and lower the requirements for human editors. Existing automatic editing systems are mainly scene- or event-specific, e.g., soccer game broadcasting, yet the automatic systems for general editing, e.g., movie or vlog editing which covers various scenes and events, were rarely studied before, and converting the event-driven editing method to a general scene is nontrivial. In this paper, we propose a two-stage scheme for general editing. Firstly, unlike previous works that extract scene-specific features, we leverage the pre-trained Vision-Language Model (VLM) to extract the editing-relevant representations as editing context. Moreover, to close the gap between the professional-looking videos and the automatic productions generated with simple guidelines, we propose a Reinforcement Learning (RL)-based editing framework to formulate the editing problem and train the virtual editor to make better sequential editing decisions. Finally, we evaluate the proposed method on a more general editing task with a real movie dataset. Experimental results demonstrate the effectiveness and benefits of the proposed context representation and the learning ability of our RL-based editing framework.
引用
收藏
页码:6441 / 6450
页数:10
相关论文
共 50 条
  • [1] Constraint embedding for prompt tuning in vision-language pre-trained model
    Cheng, Keyang
    Wei, Liutao
    Tang, Jingfeng
    Zhan, Yongzhao
    MULTIMEDIA SYSTEMS, 2025, 31 (01)
  • [2] Dual Modality Prompt Tuning for Vision-Language Pre-Trained Model
    Xing, Yinghui
    Wu, Qirui
    Cheng, De
    Zhang, Shizhou
    Liang, Guoqiang
    Wang, Peng
    Zhang, Yanning
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 2056 - 2068
  • [3] Multimodal Search on Iconclass using Vision-Language Pre-Trained Models
    Santini, Cristian
    Posthumus, Etienne
    Tietz, Tabea
    Tan, Mary Ann
    Bruns, Oleksandra
    Sack, Harald
    2023 ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES, JCDL, 2023, : 285 - 287
  • [4] CLIP-Llama: A New Approach for Scene Text Recognition with a Pre-Trained Vision-Language Model and a Pre-Trained Language Model
    Zhao, Xiaoqing
    Xu, Miaomiao
    Silamu, Wushour
    Li, Yanbing
    SENSORS, 2024, 24 (22)
  • [5] Leveraging Vision-Language Pre-Trained Model and Contrastive Learning for Enhanced Multimodal Sentiment Analysis
    An, Jieyu
    Zainon, Wan Mohd Nazmee Wan
    Ding, Binfen
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 37 (02): : 1673 - 1689
  • [6] Parameter and Computation Efficient Transfer Learning for Vision-Language Pre-trained Models
    Wu, Qiong
    Yu, Wei
    Zhou, Yiyi
    Huang, Shubin
    Sun, Xiaoshuai
    Ji, Rongrong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [7] Universal Adversarial Perturbations for Vision-Language Pre-trained Models
    Zhang, Peng-Fei
    Huang, Zi
    Bai, Guangdong
    PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 862 - 871
  • [8] CPT: Colorful Prompt Tuning for pre-trained vision-language models
    Yao, Yuan
    Zhang, Ao
    Zhang, Zhengyan
    Liu, Zhiyuan
    Chua, Tat-Seng
    Sun, Maosong
    AI OPEN, 2024, 5 : 30 - 38
  • [9] Open-World Object Manipulation using Pre-Trained Vision-Language Models
    Stone, Austin
    Xiao, Ted
    Lu, Yao
    Gopalakrishnan, Keerthana
    Lee, Kuang-Huei
    Quan Vuong
    Wohlhart, Paul
    Kirmani, Sean
    Zitkovich, Brianna
    Xia, Fei
    Finn, Chelsea
    Hausman, Karol
    CONFERENCE ON ROBOT LEARNING, VOL 229, 2023, 229
  • [10] Constraint embedding for prompt tuning in vision-language pre-trained modelConstraint embedding for prompt tuning in vision-language pre-trained modelK. Cheng et al.
    Keyang Cheng
    Liutao Wei
    Jingfeng Tang
    Yongzhao Zhan
    Multimedia Systems, 2025, 31 (1)