A DC to 25 MHz Current Sensing Interface for Hall-Effect Sensor

被引:3
|
作者
Hassan, Ayesha [1 ]
Mahar, Asma [1 ]
Shetty, Satish [2 ]
Lalwani, Anand Vikas [3 ]
Faruque, K. Asif [1 ]
Paul, Riya [1 ]
Senesky, Debbie G. [3 ,4 ]
Salamo, Gregory J. [2 ]
Mantooth, H. Alan [1 ]
机构
[1] Univ Arkansas, Dept Elect Engn, Fayetteville, AR 72701 USA
[2] Univ Arkansas, Inst Nanosci & Engn, Fayetteville, AR 72701 USA
[3] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Sensors; Magnetic sensors; Bandwidth; Spinning; Voltage; Choppers (circuits); Passive filters; Hall-effect devices; magnetic-field sensors; sensor readout circuits; sensor signal conditioning; OFFSET;
D O I
10.1109/JSEN.2024.3360462
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A dc to 25 MHz readout interface (ROI) design for Hall-effect sensors is presented. The current sensing system is comprised of a high-bandwidth aluminum gallium nitride/gallium nitride (AlGaN/GaN) or aluminum gallium arsenide/gallium arsenide (AlGaAs/GaAs) Hall-effect sensor and an on-chip fast ROI. The interface makes use of multisignal paths, utilizing a two-way current spinning technique to minimize offset at dc while using high- pass filtering to eliminate offset at the high frequencies. The usage of two sensors and signal paths makes it possible to take advantage of the full bandwidth of the sensor. The summed output is the desired high- bandwidth signal proportional to the current or the magnetic field to be detected. The system achieves a rise time of 40 ns in response to a current pulse, resulting in a noninvasive fast current detection solution. The die area of the ROI is 2850 by 200 mu m . When testing with a current trace at 1.5 mm from the sensor and using a ferrite-core magnetic field concentrator, the current sensitivity is observed to be 12.7 mV/A.
引用
收藏
页码:10316 / 10325
页数:10
相关论文
共 50 条
  • [1] The Transmission Interface Design of Hall-effect sensor
    Fan, Hua
    Zeng, Yongqin
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 3211 - 3214
  • [2] Design and Development of DC High Current Sensor Using Hall-Effect Method
    Dewi, Sasti Dwi Tungga
    Panatarani, C.
    Joni, I. Made
    2ND PADJADJARAN INTERNATIONAL PHYSICS SYMPOSIUM 2015 (PIPS-2015): MATERIALS FUNCTIONALIZATION AND ENERGY CONSERVATIONS, 2016, 1712
  • [3] Hall-effect current sensor with high bandwidth
    Kiewe, B
    PROCEEDINGS OF THE FIFTH EUROPEAN SPACE POWER CONFERENCE (ESPC), VOLS 1 AND 2, 1998, 416 : 395 - 398
  • [4] HALL-EFFECT DC MOTORS
    SUZUKI, M
    DESIGN NEWS, 1977, 33 (14) : 34 - 36
  • [5] DC Digital Gaussmeter Based on Linear Hall-Effect Sensor IC
    Ursache, Silviu
    Lunca, Eduard
    Vornicu, Silviu
    2019 INTERNATIONAL CONFERENCE ON ELECTROMECHANICAL AND ENERGY SYSTEMS (SIELMEN), 2019,
  • [6] HALL-EFFECT CURRENT DETECTOR
    SMITH, A
    ELECTRONICS & WIRELESS WORLD, 1986, 93 (1608): : 62 - 62
  • [7] HALL-EFFECT CURRENT PROBE
    不详
    ELECTRONICS WORLD & WIRELESS WORLD, 1995, (1708): : 230 - 231
  • [8] Hall-Effect Sensor Fault Detection, Identification, and Compensation in Brushless DC Drives
    Scelba, Giacomo
    De Donato, Giulio
    Pulvirenti, Mario
    Capponi, Fabio Giulii
    Scarcella, Giuseppe
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2016, 52 (02) : 1542 - 1554
  • [9] Hall-Effect Sensor Fault Detection, Identification and Compensation in Brushless DC Drives
    Scelba, G.
    De Donato, G.
    Pulvirenti, M.
    Capponi, F. Giulii
    Scarcella, G.
    2015 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2015, : 3987 - 3995
  • [10] Coreless current sensor saves: space over Hall-effect parts
    不详
    ELECTRONIC PRODUCTS MAGAZINE, 1999, 42 (06): : 90 - 90