Lessons from spatial transcriptomics and computational geography in mapping the transcriptome

被引:0
|
作者
Comber, Alexis [1 ,2 ]
Zormpas, Eleftherios [3 ]
Queen, Rachel [3 ]
Cockell, Simon J. [3 ]
机构
[1] Univ Leeds, Sch Geog, Leeds, W Yorkshire, England
[2] Univ Leeds, Leeds Inst Data Analyt, Leeds, W Yorkshire, England
[3] Newcastle Univ, Biosci Inst, Newcastle Upon Tyne, Tyne & Wear, England
来源
27TH AGILE CONFERENCE ON GEOGRAPHIC INFORMATION SCIENCE GEOGRAPHIC INFORMATION SCIENCE FOR A SUSTAINABLE FUTURE | 2024年 / 5卷
基金
英国医学研究理事会;
关键词
Spatial data; Molecular Biology; GIScience; Spatial autocorrelation; the MAUP; Process spatial non-stationarity;
D O I
10.5194/agile-giss-5-21-2024
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Spatial data, data with some form of location attached, are the norm: all data are spatial now. However spatial data requires consideration of three critical characteristics, observation spatial auto-correlated, process spatially non-stationarity and the effect of the MAUP. Geographers are familiar with these and have tools, rubrics and workflows to accommodate them and understand their impacts on statical inference, understanding and prediction. However, increasingly researchers in non geographical domains, with no experience of, or exposure to quantitative geography or GIScience are undertaking analyses of such data without full or any understanding of the impacts of these spatial data properties. This short paper describes recent interactions and work with research in gene analysis and Spatial Transcriptomics, and highlight the opportunities for GIScience to inform and steer the many new users of spatial data.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] From genes to geography: Mapping allergic disease landscapes with spatial transcriptomics
    Chennareddy, Sumanth
    Brunner, Patrick M.
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2025, 155 (03) : 800 - 802
  • [2] Computational solutions for spatial transcriptomics
    Kleino, Iivari
    Frolovaite, Paulina
    Suomi, Tomi
    Elo, Laura L.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 4870 - 4884
  • [3] Computational Approaches and Challenges in Spatial Transcriptomics
    Fang, Shuangsang
    Chen, Bichao
    Zhang, Yong
    Sun, Haixi
    Liu, Longqi
    Liu, Shiping
    Li, Yuxiang
    Xu, Xun
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2023, 21 (01) : 24 - 47
  • [4] Spatial transcriptomics herald a new era of transcriptome research
    Saul, Dominik
    Kosinsky, Robyn Laura
    CLINICAL AND TRANSLATIONAL MEDICINE, 2023, 13 (05):
  • [5] A computational pipeline for spatial mechano-transcriptomics
    Hallou, Adrien
    He, Ruiyang
    Simons, Benjamin D.
    Dumitrascu, Bianca
    NATURE METHODS, 2025, 22 (04)
  • [6] Mapping out multiple sclerosis with spatial transcriptomics
    Horan, Kellie
    Williams, Anna C.
    NATURE NEUROSCIENCE, 2024, 27 (12) : 2270 - 2272
  • [7] TIST: Transcriptome and Histopathological Image Integrative Analysis for Spatial Transcriptomics
    Yiran Shan
    Qian Zhang
    Wenbo Guo
    Yanhong Wu
    Yuxin Miao
    Hongyi Xin
    Qiuyu Lian
    Jin Gu
    Genomics,Proteomics & Bioinformatics, 2022, Proteomics & Bioinformatics2022 (05) : 974 - 988
  • [8] TIST: Transcriptome and Histopathological Image Integrative Analysis for Spatial Transcriptomics
    Shan, Yiran
    Zhang, Qian
    Guo, Wenbo
    Wu, Yanhong
    Miao, Yuxin
    Xin, Hongyi
    Lian, Qiuyu
    Gu, Jin
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2022, 20 (05) : 974 - 988
  • [9] Scalable spatial transcriptomics through computational array reconstruction
    Hu, Chenlei
    Borji, Mehdi
    Marrero, Giovanni J.
    Kumar, Vipin
    Weir, Jackson A.
    Kammula, Sachin V.
    Macosko, Evan Z.
    Chen, Fei
    NATURE BIOTECHNOLOGY, 2025,
  • [10] Spatial Transcriptomics: Biotechnologies, Computational Tools, and Neuroscience Applications
    Wang, Qianwen
    Zhu, Hongyuan
    Deng, Lin
    Xu, Shuangbin
    Xie, Wenqin
    Li, Ming
    Wang, Rui
    Tie, Liang
    Zhan, Li
    Yu, Guangchuang
    SMALL METHODS, 2025,