共 50 条
- [1] Disentangling the Latent Space of (Variational) Autoencoders for NLP ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS (UKCI), 2019, 840 : 163 - 168
- [2] Disentangling Disentanglement in Variational Autoencoders INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
- [3] Disentangling Generative Factors in Natural Language with Discrete Variational Autoencoders FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021, 2021, : 3547 - 3556
- [4] Disentangling Generative Factors of Physical Fields Using Variational Autoencoders FRONTIERS IN PHYSICS, 2022, 10
- [5] Disentangling Latent Factors of Variational Auto-encoder with Whitening ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: IMAGE PROCESSING, PT III, 2019, 11729 : 590 - 603
- [6] Learning Latent Subspaces in Variational Autoencoders ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
- [7] Private-Shared Disentangled Multimodal VAE for Learning of Latent Representations 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 1692 - 1700
- [9] Joint variational autoencoders for multimodal imputation and embedding Nature Machine Intelligence, 2023, 5 : 631 - 642