A double network facilitated ion-electron conductor for thermoelectric harvesting with high energy density

被引:8
|
作者
Zhang, Mao [1 ]
Fu, Qiang [1 ]
Deng, Hua [1 ]
机构
[1] Sichuan Univ, Coll Polymer Sci & Engn, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
Ionic thermoelectric; Electronic thermoelectric; Mix ionic -electronic conductor; PEDOT:PSS; Ionic liquid; COMPOSITES; POLYMER; ACID;
D O I
10.1016/j.cej.2024.150307
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As a young member of the thermoelectric (TE) family, ionic thermoelectric (i-TE) technology stands out due to its exceptionally high thermopower. However, the intermittent nature of its heat utilization results in a weak power output, thus limiting its practical application. To tackle this issue, combining i-TE with electronic thermoelectric (e-TE) materials that exhibit stable heat -to -electricity conversion capabilities presents itself as a promising solution. With this aim, we introduced interpenetrating network (IPN) structure in the fabrication process of mixed ionic -electronic TE (MIETE) materials. Specifically, we created a double network MIETE converter through the in -situ polymerization of ionic poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) on a loosely structured poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/lithium bis(trifluoromethane)sulfonimide (LiTFSI) electronic conductive framework. This subsequent construction of the inert network ensures uninterrupted electronic conductivity and boosts density for improved conductivity (a). The innovative structural design effectively amalgamates thermodiffusion and Seebeck effects, facilitating continuous electricity generation. The resulting hybrid PEDOT:PSS/LiTFSI/PAMPS-LiCl (PLiP) hydrogels exhibit exceptional TE performance, showing a thermopower of 7.86 mV K -1 and a of 33.3 mS cm (- 1) . It is worth noting that the PLiP hydrogel illustrates a power generation time of over 4 h and an ultra -high energy density of 93.7 J m( - 2) , which exceeds other TE hydrogels based on the thermodiffusion principle.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Ion-Electron Coupling Enables Ionic Thermoelectric Material with New Operation Mode and High Energy Density
    He, Yongjie
    Li, Shaowei
    Chen, Rui
    Liu, Xu
    Odunmbaku, George Omololu
    Fang, Wei
    Lin, Xiaoxue
    Ou, Zeping
    Gou, Qianzhi
    Wang, Jiacheng
    Ouedraogo, Nabonswende Aida Nadege
    Li, Jing
    Li, Meng
    Li, Chen
    Zheng, Yujie
    Chen, Shanshan
    Zhou, Yongli
    Sun, Kuan
    NANO-MICRO LETTERS, 2023, 15 (01)
  • [2] An Organic Mixed Ion-Electron Conductor for Power Electronics
    Malti, Abdellah
    Edberg, Jesper
    Granberg, Hjalmar
    Khan, Zia Ullah
    Andreasen, Jens W.
    Liu, Xianjie
    Zhao, Dan
    Zhang, Hao
    Yao, Yulong
    Brill, Joseph W.
    Engquist, Isak
    Fahlman, Mats
    Wagberg, Lars
    Crispin, Xavier
    Berggren, Magnus
    ADVANCED SCIENCE, 2016, 3 (02)
  • [3] Measurements of ion-electron energy-transfer cross section in high-energy-density plasmas
    Adrian, P. J.
    Florido, R.
    Grabowski, P. E.
    Mancini, R.
    Bachmann, B.
    Benedict, L. X.
    Johnson, M. Gatu
    Kabadi, N.
    Lahmann, B.
    Li, C. K.
    Petrasso, R. D.
    Rinderknecht, H. G.
    Regan, S. P.
    Seguin, F. H.
    Singleton, R. L.
    Sio, H.
    Sutcliffe, G. D.
    Whitley, H. D.
    Frenje, J. A.
    PHYSICAL REVIEW E, 2022, 106 (05)
  • [4] A nanofluidic chemoelectrical generator with enhanced energy harvesting by ion-electron Coulomb drag
    Jiang, Yisha
    Liu, Wenchao
    Wang, Tao
    Wu, Yitian
    Mei, Tingting
    Wang, Li
    Xu, Guoheng
    Wang, Yude
    Liu, Nannan
    Xiao, Kai
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [5] The double photoionization of HCl: An ion-electron coincidence study
    Alagia, M
    Biondini, F
    Brunetti, BG
    Candori, P
    Falcinelli, S
    Teixidor, MM
    Pirani, F
    Richter, R
    Stranges, S
    Vecchiocattivi, F
    JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (21): : 10508 - 10512
  • [6] STRUCTURAL FEATURES OF AND ION-ELECTRON TRANSPORT IN THE SUPERIONIC CONDUCTOR CUCRSE2
    YAKSHIBAEV, RA
    ZABOLOTSKII, VN
    ALMUKHAMETOV, RF
    GALIULLIN, RR
    FIZIKA TVERDOGO TELA, 1987, 29 (04): : 1220 - 1222
  • [7] ENERGY-DISTRIBUTION OF SECONDARY ION-ELECTRON EMISSION
    SOSZKA, W
    LIPIEC, J
    SURFACE SCIENCE, 1973, 36 (02) : 714 - 724
  • [8] DENSITY-FUNCTIONAL THEORY AND FREEZING OF AN ION-ELECTRON PLASMA
    XU, H
    HANSEN, JP
    CHANDLER, D
    EUROPHYSICS LETTERS, 1994, 26 (06): : 419 - 424
  • [9] A STUDY OF ENERGY SPECTRA OF ION-ELECTRON EMISSION IN AN EMISSION ELECTRON MICROSCOPE
    ROZENFEL.LB
    KAGAN, NB
    KUSHNIR, YM
    RADIO ENGINEERING AND ELECTRONIC PHYSICS-USSR, 1966, 11 (02): : 237 - &
  • [10] Ion–Electron Coupling Enables Ionic Thermoelectric Material with New Operation Mode and High Energy Density
    Yongjie He
    Shaowei Li
    Rui Chen
    Xu Liu
    George Omololu Odunmbaku
    Wei Fang
    Xiaoxue Lin
    Zeping Ou
    Qianzhi Gou
    Jiacheng Wang
    Nabonswende Aida Nadege Ouedraogo
    Jing Li
    Meng Li
    Chen Li
    Yujie Zheng
    Shanshan Chen
    Yongli Zhou
    Kuan Sun
    Nano-Micro Letters, 2023, 15 (07) : 199 - 209