Uncertainty-Aware Web of Things Composition: A Probabilistic Approach

被引:0
|
作者
Boulaares, Soura [1 ]
Sassi, Salma [2 ]
Chbeir, Richard [3 ]
Bensilmane, Djamal [4 ]
Faiz, Sami [5 ]
机构
[1] ENSI, Manouba, Tunisia
[2] FSJEGJ, Jendouba, Tunisia
[3] UPPA, Pau, France
[4] UCBL, Villeurbanne, France
[5] ISAAM, Manouba, Tunisia
关键词
Web of Things (WoT); Uncertainty; Service composition; Quality of Thing (QoT); interaction; behaviour; TD description; navigation; Probabilistic approach;
D O I
10.1109/AICCSA59173.2023.10479340
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Web of Things (WoT) connects physical devices to the web using standard protocols. However, uncertainty in WoT service compositions may lead to critical problems in real-world applications. For example, in a smart hotel system, a user wishing to control the room temperature based on data from multiple sensors may get incorrect service compositions when using inaccurate or incomplete data, which can be dangerous in safety-critical situations. To address this issue, we propose a probabilistic approach that represents uncertain WoT services using Thing Description (TD) by including Quality of Thing (QoT) properties, interactions, and behaviors. Our approach computes the uncertainty of each node used in the composition process and proposes, using a WoT probabilistic algebra, an HTTP GET method that takes into account uncertain input and calculates the confidence degree of outputs when invoking WoT services. Our approach can improve the reliability of WoT services in uncertain environments and can be applied in various domains to create more robust and safer applications.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware Regression
    Li, Wanhua
    Huang, Xiaoke
    Lu, Jiwen
    Feng, Jianjiang
    Zhou, Jie
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 13891 - 13900
  • [2] Uncertainty-Aware Multiview Deep Learning for Internet of Things Applications
    Xu, Cai
    Zhao, Wei
    Zhao, Jinglong
    Guan, Ziyu
    Song, Xiangyu
    Li, Jianxin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 1456 - 1466
  • [3] Probabilistic Uncertainty-Aware Risk Spot Detector for Naturalistic Driving
    Puphal, Tim
    Probst, Malte
    Eggert, Julian
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2019, 4 (03): : 406 - 415
  • [4] Uncertainty-Aware Fusion of Probabilistic Classifiers for Improved Transformer Diagnostics
    Aizpurua, Jose Ignacio
    Catterson, Victoria M.
    Stewart, Brian G.
    McArthur, Stephen D. J.
    Lambert, Brandon
    Cross, James G.
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (01): : 621 - 633
  • [5] UNARI: An Uncertainty-aware Approach to AS Relationships Inference
    Feng, Guoyao
    Seshan, Srinivasan
    Steenkiste, Peter
    PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON EMERGING NETWORKING EXPERIMENTS AND TECHNOLOGIES (CONEXT '19), 2019, : 272 - 284
  • [6] An Uncertainty-Aware Approach for Exploratory Microblog Retrieval
    Liu, Mengchen
    Liu, Shixia
    Zhu, Xizhou
    Liao, Qinying
    Wei, Furu
    Pan, Shimei
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2016, 22 (01) : 250 - 259
  • [7] Uncertainty-aware adaptive service composition in cloud computing
    Ren L.
    Wang W.
    Xu H.
    Wang, Wenjian (wjwang@sxu.edu.cn), 1600, Science Press (53): : 2867 - 2881
  • [8] An interval-based fuzzy ranking approach for QoS uncertainty-aware service composition
    Jian, Xing
    Zhu, Qingsheng
    Xia, Yunni
    OPTIK, 2016, 127 (04): : 2102 - 2110
  • [9] Uncertainty-aware QoS description and selection model for web services
    Wan, Cheng
    Wang, Hongbing
    2007 IEEE INTERNATIONAL CONFERENCE ON SERVICES COMPUTING, PROCEEDINGS, 2007, : 154 - +
  • [10] Prediction of Lung Nodule Progression with an Uncertainty-Aware Hierarchical Probabilistic Network
    Rafael-Palou, Xavier
    Aubanell, Anton
    Ceresa, Mario
    Ribas, Vicent
    Piella, Gemma
    Gonzalez Ballester, Miguel A.
    DIAGNOSTICS, 2022, 12 (11)