CSGNN: Contrastive Self-Supervised Graph Neural Network for Molecular Interaction Prediction

被引:0
|
作者
Zhao, Chengshuai [1 ]
Liu, Shuai [1 ]
Huang, Feng [1 ]
Liu, Shichao [1 ]
Zhang, Wen [1 ]
机构
[1] Huazhong Agr Univ, Coll Informat, Wuhan, Peoples R China
来源
PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021 | 2021年
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Molecular interactions are significant resources for analyzing sophisticated biological systems. Identification of multifarious molecular interactions attracts increasing attention in biomedicine, bioinformatics, and human healthcare communities. Recently, a plethora of methods have been proposed to reveal molecular interactions in one specific domain. However, existing methods heavily rely on features or structures involving molecules, which limits the capacity of transferring the models to other tasks. Therefore, generalized models for the multifarious molecular interaction prediction (MIP) are in demand. In this paper, we propose a contrastive self-supervised graph neural network (CSGNN) to predict molecular interactions. CSGNN injects a mix-hop neighborhood aggregator into a graph neural network (GNN) to capture highorder dependency in the molecular interaction networks and leverages a contrastive self-supervised learning task as a regularizer within a multi-task learning paradigm to enhance the generalization ability. Experiments on seven molecular interaction networks show that CSGNN outperforms classic and state-of-the-art models. Comprehensive experiments indicate that the mix-hop aggregator and the self-supervised regularizer can effectively facilitate the link inference in multifarious molecular networks.
引用
收藏
页码:3756 / 3763
页数:8
相关论文
共 50 条
  • [1] CSGNN: Contamination Warning and Control of Food Quality via Contrastive Self-Supervised Learning-Based Graph Neural Network
    Yan, Junyi
    Li, Hongyi
    Zuo, Enguang
    Li, Tianle
    Chen, Chen
    Chen, Cheng
    Lv, Xiaoyi
    FOODS, 2023, 12 (05)
  • [2] Self-supervised Heterogeneous Graph Neural Network with Co-contrastive Learning
    Wang, Xiao
    Liu, Nian
    Han, Hui
    Shi, Chuan
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 1726 - 1736
  • [3] Robust Self-Supervised Structural Graph Neural Network for Social Network Prediction
    Zhang, Yanfu
    Gao, Hongchang
    Pei, Jian
    Huang, Heng
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 1352 - 1361
  • [4] CSGNN: Improving Graph Neural Networks with Contrastive Semi-supervised Learning
    Song, Yumeng
    Gu, Yu
    Li, Xiaohua
    Li, Chuanwen
    Yu, Ge
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT I, 2022, : 731 - 738
  • [5] Self-supervised Hierarchical Graph Neural Network for Graph Representation
    Bandyopadhyay, Sambaran
    Aggarwal, Manasvi
    Murty, M. Narasimha
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 603 - 608
  • [6] Contrastive Self-supervised Learning for Graph Classification
    Zeng, Jiaqi
    Xie, Pengtao
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10824 - 10832
  • [7] SCGC : Self-supervised contrastive graph clustering
    Kulatilleke, Gayan K.
    Portmann, Marius
    Chandra, Shekhar S.
    NEUROCOMPUTING, 2025, 611
  • [8] JGCL: Joint Self-Supervised and Supervised Graph Contrastive Learning
    Akkas, Selahattin
    Azad, Ariful
    COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2022, WWW 2022 COMPANION, 2022, : 1099 - 1105
  • [9] Self-supervised contrastive graph representation with node and graph augmentation?
    Duan, Haoran
    Xie, Cheng
    Li, Bin
    Tang, Peng
    NEURAL NETWORKS, 2023, 167 : 223 - 232
  • [10] Self-supervised graph neural networks for polymer property prediction
    Gao, Qinghe
    Dukker, Tammo
    Schweidtmann, Artur M.
    Weber, Jana M.
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2024, 9 (11): : 1130 - 1143