SimFBO: Towards Simple, Flexible and Communication-efficient Federated Bilevel Learning

被引:0
|
作者
Yang, Yifan [1 ]
Xiao, Peiyao [1 ]
Ji, Kaiyi [1 ]
机构
[1] SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY 14260 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated bilevel optimization (FBO) has shown great potential recently in machine learning and edge computing due to the emerging nested optimization structure in meta-learning, fine-tuning, hyperparameter tuning, etc. However, existing FBO algorithms often involve complicated computations and require multiple sub-loops per iteration, each of which contains a number of communication rounds. In this paper, we propose a simple and flexible FBO framework named SimFBO, which is easy to implement without sub-loops, and includes a generalized server-side aggregation and update for improving communication efficiency. We further propose System-level heterogeneity robust FBO (ShroFBO) as a variant of SimFBO with stronger resilience to heterogeneous local computation. We show that SimFBO and ShroFBO provably achieve a linear convergence speedup with partial client participation and client sampling without replacement, as well as improved sample and communication complexities. Experiments demonstrate the effectiveness of the proposed methods over existing FBO algorithms.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Communication-efficient federated learning
    Chen, Mingzhe
    Shlezinger, Nir
    Poor, H. Vincent
    Eldar, Yonina C.
    Cui, Shuguang
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (17)
  • [2] Communication-Efficient Vertical Federated Learning
    Khan, Afsana
    ten Thij, Marijn
    Wilbik, Anna
    ALGORITHMS, 2022, 15 (08)
  • [3] Communication-Efficient Adaptive Federated Learning
    Wang, Yujia
    Lin, Lu
    Chen, Jinghui
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [4] FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning
    Gasanov, Elnur
    Khaled, Ahmed
    Horvath, Samuel
    Richtarik, Peter
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [5] Communication-Efficient Federated Learning with Heterogeneous Devices
    Chen, Zhixiong
    Yi, Wenqiang
    Liu, Yuanwei
    Nallanathan, Arumugam
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 3602 - 3607
  • [6] Communication-Efficient Federated Learning for Decision Trees
    Zhao, Shuo
    Zhu, Zikun
    Li, Xin
    Chen, Ying-Chi
    IEEE Transactions on Artificial Intelligence, 2024, 5 (11): : 5478 - 5492
  • [7] Communication-Efficient Federated Learning with Adaptive Quantization
    Mao, Yuzhu
    Zhao, Zihao
    Yan, Guangfeng
    Liu, Yang
    Lan, Tian
    Song, Linqi
    Ding, Wenbo
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (04)
  • [8] FedBoost: Communication-Efficient Algorithms for Federated Learning
    Hamer, Jenny
    Mohri, Mehryar
    Suresh, Ananda Theertha
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [9] Communication-Efficient Secure Aggregation for Federated Learning
    Ergun, Irem
    Sami, Hasin Us
    Guler, Basak
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 3881 - 3886
  • [10] Ternary Compression for Communication-Efficient Federated Learning
    Xu, Jinjin
    Du, Wenli
    Jin, Yaochu
    He, Wangli
    Cheng, Ran
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (03) : 1162 - 1176