Sieve Estimation of the Additive Hazards Model with Bivariate Current Status Data

被引:0
|
作者
Zhang, Ce [1 ,2 ]
Huang, Haiwu [3 ]
Bandyopadhyay, Dipankar [4 ]
Al-Mosawi, Riyadh Rustam [5 ]
Lu, Xuewen [1 ]
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[3] Guilin Univ Aerosp Technol, Sch Sci, Guilin 541004, Guangxi, Peoples R China
[4] Virginia Commonwealth Univ, Dept Biostat, Richmond, VA 23298 USA
[5] Univ Thi Qar, Coll Comp Sci & Math, Dept Math, Nasiriyah, Iraq
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金; 美国国家卫生研究院;
关键词
Additive hazards model; Bivariate current status data; Bernstein polynomial; Semiparametric efficiency; Sieve estimation; MAXIMUM-LIKELIHOOD-ESTIMATION; REGRESSION-ANALYSIS; EFFICIENT ESTIMATION; SEMIPARAMETRIC REGRESSION; ASYMPTOTIC THEORY; CONVERGENCE; UNIVARIATE; COPULA;
D O I
10.1007/s12561-024-09436-7
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we study sieve maximum likelihood estimators of both finite and infinite dimensional parameters in the marginal additive hazards models for bivariate current status data, where the joint distribution of the bivariate survival times is modeled by a nonparametric copula. We assume the two baseline hazard functions and the copula are unknown functions, and use constrained Bernstein polynomials (BP) to approximate these functions. Compared to the existing methods, our proposed method has three main advantages. First, our method provides sufficient flexibility; we bypass the specification of a specific copula structure via efficient BP approximations. Next, we establish strong consistency and optimal rate of convergence of the estimators, along with asymptotic normality and semiparametric efficiency of the regression parameter estimators. Finally, the computational framework relies on the augmented Lagrangian minimization algorithm for optimizing smooth nonlinear objective functions with constraints, leading to faster convergence. Simulation studies conducted using synthetic data reveal that the proposed estimators exhibit nice finite-sample properties. We also illustrate our methodology via application to a real dataset evaluating prevalence of antibodies to hepatitis B and HIV among Irish prisoners.
引用
收藏
页数:46
相关论文
共 50 条
  • [1] Efficient estimation for additive hazards regression with bivariate current status data
    TONG XingWei 1
    2 School of Mathematical Sciences
    3 School of Mathematics
    4 Department of Statistics
    ScienceChina(Mathematics), 2012, 55 (04) : 758 - 769
  • [2] Efficient estimation for additive hazards regression with bivariate current status data
    Tong XingWei
    Hu Tao
    Sun JianGuo
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (04) : 763 - 774
  • [3] Efficient estimation for additive hazards regression with bivariate current status data
    XingWei Tong
    Tao Hu
    JianGuo Sun
    Science China Mathematics, 2012, 55 : 763 - 774
  • [4] Efficient estimation for the proportional hazards model with bivariate current status data
    Wang, Lianming
    Sun, Jianguo
    Tong, Xingwei
    LIFETIME DATA ANALYSIS, 2008, 14 (02) : 134 - 153
  • [5] Efficient estimation for the proportional hazards model with bivariate current status data
    Lianming Wang
    Jianguo Sun
    Xingwei Tong
    Lifetime Data Analysis, 2008, 14 : 134 - 153
  • [6] Efficient Estimation of the Partly Linear Additive Hazards Model with Current Status Data
    Lu, Xuewen
    Song, Peter X-K
    SCANDINAVIAN JOURNAL OF STATISTICS, 2015, 42 (01) : 306 - 328
  • [7] Estimation of the additive hazards model with current status data in the presence of informative censoring
    Li, Huiqiong
    Zhang, Han
    Sun, Jianguo
    STATISTICS AND ITS INTERFACE, 2019, 12 (02) : 321 - 330
  • [8] Additive–multiplicative hazards model with current status data
    Wanrong Liu
    Jianglin Fang
    Xuewen Lu
    Computational Statistics, 2018, 33 : 1245 - 1266
  • [9] On efficient estimation in additive hazards regression with current status data
    Lu, Xuewen
    Song, Peter X. -K.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (06) : 2051 - 2058
  • [10] Efficient estimation in additive hazards regression with current status data
    Martinussen, T
    Scheike, TH
    BIOMETRIKA, 2002, 89 (03) : 649 - 658