Error analysis for a Crouzeix-Raviart approximation of the p-Dirichlet problem

被引:3
|
作者
Kaltenbach, Alex [1 ]
机构
[1] Tech Univ Berlin, Inst Math, Str 17,Juni 135, D- 10623 Berlin, Germany
关键词
p-Dirichlet problem; Crouzeix-Raviart element; a priori error analysis; medius error analysis; a posteriori error analysis; FINITE-ELEMENT APPROXIMATION; DISCONTINUOUS GALERKIN APPROXIMATION; NONCONFORMING APPROXIMATION; ELLIPTIC-EQUATIONS; GLOBAL REGULARITY; LAPLACIAN; SYSTEMS; INTERPOLATION; ESTIMATORS; CONVERGENCE;
D O I
10.1515/jnma-2022-0106
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we examine a Crouzeix-Raviart approximation for non-linear partial differential equations having a (p, delta)-structure for some p is an element of (1, infinity) and delta >= 0. We establish a priori error estimates, which are optimal for all p is an element of (1, infinity) and delta >= 0, medius error estimates, i.e., best-approximation results, and a primal-dual a posteriori error estimate, which is both reliable and efficient. The theoretical findings are supported by numerical experiments.
引用
收藏
页码:111 / 138
页数:28
相关论文
共 50 条