Optimized Dual-Volumes for Tetrahedral Meshes

被引:0
|
作者
Jacobson, Alec [1 ,2 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
[2] Adobe Res Toronto, Toronto, ON, Canada
关键词
LAPLACE;
D O I
10.1111/cgf.15133
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Constructing well-behaved Laplacian and mass matrices is essential for tetrahedral mesh processing. Unfortunately, the de facto standard linear finite elements exhibit bias on tetrahedralized regular grids, motivating the development of finite-volume methods. In this paper, we place existing methods into a common construction, showing how their differences amount to the choice of simplex centers. These choices lead to satisfaction or breakdown of important properties: continuity with respect to vertex positions, positive semi-definiteness of the implied Dirichlet energy, positivity of the mass matrix, and unbiased-ness on regular grids. Based on this analysis, we propose a new method for constructing dual-volumes which explicitly satisfy all of these properties via convex optimization.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] GENERATING QUALITY TETRAHEDRAL MESHES FROM BINARY VOLUMES
    Hansen, Mads Fogtmann
    Baerentzen, Jakob Andreas
    Larsen, Rasmus
    VISAPP 2009: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 1, 2009, : 5 - 12
  • [2] A primal/dual representation for discrete Morse complexes on tetrahedral meshes
    Weiss, Kenneth
    Iuricich, Federico
    Fellegara, Riccardo
    De Floriani, Leila
    COMPUTER GRAPHICS FORUM, 2013, 32 (03) : 361 - 370
  • [3] Simplification of tetrahedral meshes
    Trotts, IJ
    Hamann, B
    Joy, KI
    Wiley, DF
    VISUALIZATION '98, PROCEEDINGS, 1998, : 287 - 295
  • [4] Automatic merging of tetrahedral meshes
    Lo, S. H.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 93 (11) : 1191 - 1215
  • [5] Tutte Embeddings of Tetrahedral Meshes
    Alexa, Marc
    DISCRETE & COMPUTATIONAL GEOMETRY, 2025, 73 (01) : 197 - 207
  • [6] Simplification of nonconvex tetrahedral meshes
    Kraus, M
    Ertl, T
    HIERARCHICAL AND GEOMETRICAL METHODS IN SCIENTIFIC VISUALIZATION, 2003, : 185 - 195
  • [7] Streaming simplification of tetrahedral meshes
    Vo, Huy T.
    Callahan, Steven P.
    Lindstrom, Peter
    Pascucci, Valerio
    Silva, Claudio T.
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2007, 13 (01) : 145 - 155
  • [8] TETRAHEDRAL DECOMPOSITIONS OF HEXAHEDRAL MESHES
    HACON, D
    TOMEI, C
    EUROPEAN JOURNAL OF COMBINATORICS, 1989, 10 (05) : 435 - 443
  • [9] Direct modifications of tetrahedral meshes
    Guo, YuFei
    Hai, YongQing
    Liu, JianFei
    ENGINEERING COMPUTATIONS, 2020, 37 (09) : 3361 - 3385
  • [10] Simulating Drilling on Tetrahedral Meshes
    Turini, G.
    Ganovelli, F.
    Montani, C.
    EUROGRAPHICS 2006: SHORT PAPERS, 2006, : 127 - +