Deep Clustering: A Comprehensive Survey

被引:21
|
作者
Ren, Yazhou [1 ,2 ]
Pu, Jingyu [1 ]
Yang, Zhimeng [1 ]
Xu, Jie [1 ]
Li, Guofeng [1 ]
Pu, Xiaorong [1 ,2 ]
Yu, Philip S. [3 ]
He, Lifang [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, Shenzhen 518000, Peoples R China
[3] Univ Illinois, Dept Comp Sci, Chicago, IL 60607 USA
[4] Lehigh Univ, Dept Comp Sci & Engn, Bethlehem, PA 18015 USA
关键词
Deep clustering (DC); multiview clustering (MVC); semi-supervised clustering; transfer learning; SUBSPACE SEGMENTATION; ROBUST; NETWORK; DIMENSIONALITY; AUTOENCODERS;
D O I
10.1109/TNNLS.2024.3403155
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cluster analysis plays an indispensable role in machine learning and data mining. Learning a good data representation is crucial for clustering algorithms. Recently, deep clustering (DC), which can learn clustering-friendly representations using deep neural networks (DNNs), has been broadly applied in a wide range of clustering tasks. Existing surveys for DC mainly focus on the single-view fields and the network architectures, ignoring the complex application scenarios of clustering. To address this issue, in this article, we provide a comprehensive survey for DC in views of data sources. With different data sources, we systematically distinguish the clustering methods in terms of methodology, prior knowledge, and architecture. Concretely, DC methods are introduced according to four categories, i.e., traditional single-view DC, semi-supervised DC, deep multiview clustering (MVC), and deep transfer clustering. Finally, we discuss the open challenges and potential future opportunities in different fields of DC.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and Future Directions
    Zhou, Sheng
    Xu, Hongjia
    Zheng, Zhuonan
    Chen, Jiawei
    Li, Zhao
    Bu, Jiajun
    Wu, Jia
    Wang, Xin
    Zhu, Wenwu
    Ester, Martin
    ACM COMPUTING SURVEYS, 2025, 57 (03)
  • [2] Deep multi-view clustering: A comprehensive survey of the contemporary techniques
    Chowdhury, Anal Roy
    Gupta, Avisek
    Das, Swagatam
    INFORMATION FUSION, 2025, 119
  • [3] A Comprehensive Survey of Clustering Algorithms
    Dongkuan Xu
    Yingjie Tian
    Annals of Data Science, 2015, 2 (2) : 165 - 193
  • [4] Deep image clustering: A survey
    Huang, Huajuan
    Wang, Chen
    Wei, Xiuxi
    Zhou, Yongquan
    NEUROCOMPUTING, 2024, 599
  • [5] A comprehensive survey of fast graph clustering
    Jingjing Xue
    Liyin Xing
    Yuting Wang
    Xinyi Fan
    Lingyi Kong
    Qi Zhang
    Feiping Nie
    Xuelong Li
    Vicinagearth, 1 (1):
  • [6] A Comprehensive Survey on Multi-View Clustering
    Fang, Uno
    Li, Man
    Li, Jianxin
    Gao, Longxiang
    Jia, Tao
    Zhang, Yanchun
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (12) : 12350 - 12368
  • [7] Deep Comprehensive Correlation Mining for Image Clustering
    Wu, Jianlong
    Long, Keyu
    Wang, Fei
    Qian, Chen
    Li, Cheng
    Lin, Zhouchen
    Zha, Hongbin
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 8149 - 8158
  • [8] A Comprehensive Survey on Geometric Deep Learning
    Cao, Wenming
    Yan, Zhiyue
    He, Zhiquan
    He, Zhihai
    IEEE ACCESS, 2020, 8 : 35929 - 35949
  • [9] The Deep Learning Compiler: A Comprehensive Survey
    Li, Mingzhen
    Liu, Yi
    Liu, Xiaoyan
    Sun, Qingxiao
    You, Xin
    Yang, Hailong
    Luan, Zhongzhi
    Gan, Lin
    Yang, Guangwen
    Qian, Depei
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 32 (03) : 708 - 727
  • [10] Unsupervised Clustering for Deep Learning: A tutorial survey
    Karoly, Artur Istvan
    Fuller, Robert
    Galambos, Peter
    ACTA POLYTECHNICA HUNGARICA, 2018, 15 (08) : 29 - 53