APPLICATION OF DIGITAL TWIN CONCEPT FOR SUPERCRITICAL CO2 OFF-DESIGN PERFORMANCE AND OPERATION ANALYSES

被引:0
|
作者
Moroz, Leonid [1 ]
Burlaka, Maksym [1 ]
Zhang, Tishun [1 ]
Altukhova, Olga [1 ]
机构
[1] SoftInWay Inc, Burlington, MA 01803 USA
关键词
BOTTOMING SCO2 CYCLE; DIGITAL TWIN; OFF-DESIGN; PART-LOAD OPERATION;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
To date variety of supercritical CO2 cycles were proposed by numerous authors. Multiple small-scale tests performed, and a lot of supercritical CO cycle aspects studied. Currently, 3-10 MW-scale test facilities are being built. However, there are still several pieces of SCO2 technology with the Technology Readiness Level (TRL) 3-5 and system modeling is one of them. The system modeling approach shall be sufficiently accurate and flexible, to be able to precisely predict the off- design and part-load operation of the cycle at both supercritical and condensing modes with diverse control strategies. System modeling itself implies the utilization of component models which are often idealized and may not provide a sufficient level of fidelity. Especially for prediction of off- design and part load supercritical CO2 cycle performance with near-critical compressor and transition to condensing modes with lower ambient temperatures, and other aspects of cycle operation under alternating grid demands and ambient conditions. In this study, the concept of a digital twin to predict off-design supercritical CO2 cycle performance is utilized. In particular, with the intent to have sufficient cycle simulation accuracy and flexibility the cycle simulation system with physics-based methods/modules were created for the bottoming 15.5 MW Power Generation Unit (PGU). The heat source for PGU is GE LM6000-PH DLE gas turbine. The PGU is a composite (merged) supercritical CO2 cycle with a high heat recovery rate, its design and the overall scheme are described in detail. The calculation methods utilized at cycle level and components' level, including loss models with an indication of prediction accuracy, are described. The flowchart of the process of off-design performance estimation and data transfer between the modules as well. The comparison of the results obtained utilizing PGU digital twin with other simplified approaches is performed. The results of the developed digital twin utilization to optimize cycle control strategies and parameters to improve off-design cycle performance are discussed in detail.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Off-design operation of the dry-cooled supercritical CO2 power cycle
    Lock, Andrew
    Bone, Viv
    ENERGY CONVERSION AND MANAGEMENT, 2022, 251
  • [2] Evaluation of supercritical CO2 compressor off-design performance prediction methods
    Jeong, Yongju
    Son, Seongmin
    Cho, Seong Kuk
    Baik, Seungjoon
    Lee, Jeong Ik
    ENERGY, 2020, 213
  • [3] Off-design Performance of CSP Plant Based on Supercritical CO2 Cycles
    Alfani, Dario
    Astolfi, Marco
    Binotti, Marco
    Silva, Paolo
    Macchi, Ennio
    INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS (SOLARPACES 2019), 2020, 2303
  • [4] ANALYSIS OF DESIGN, OFF-DESIGN AND ANNUAL PERFORMANCE OF SUPERCRITICAL CO2 CYCLES FOR CSP APPLICATIONS
    Thanganadar, Dhinesh
    Fornarelli, Francesco
    Camporeale, Sergio
    Asfand, Faisal
    Patchigolla, Kumar
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 11, 2020,
  • [5] A COMPARISON STUDY FOR OFF-DESIGN PERFORMANCE PREDICTION OF A SUPERCRITICAL CO2 COMPRESSOR WITH SIMILITUDE ANALYSIS
    Jeong, Yongju
    Son, Seongmin
    Cho, Seong Kuk
    Baik, Seungjoon
    Lee, Jeong Ik
    PROCEEDINGS OF THE ASME/JSME/KSME JOINT FLUIDS ENGINEERING CONFERENCE, 2019, VOL 3A, 2019,
  • [6] Design optimization and off-design performance analysis of one-dimensional supercritical CO2 Brayton cycle
    Li, Hao
    Zhang, Ruhai
    Li, Zhen
    Lee, Sangkyoung
    Ju, Yaping
    Zhang, Chuhua
    Lu, Yuanshen
    APPLIED THERMAL ENGINEERING, 2025, 258
  • [7] Off-design performance analysis of supercritical CO2 mixture Brayton cycle with floating critical points
    Luo, Yiyang
    Su, Zhanhang
    Li, Ziyang
    Zheng, Nan
    Wei, Jinjia
    SOLAR ENERGY, 2024, 276
  • [8] Off-design performance of a supercritical CO2 Brayton cycle integrated with a solar power tower system
    Yang, Jingze
    Yang, Zhen
    Duan, Yuanyuan
    ENERGY, 2020, 201
  • [9] Thermodynamic design and Off-design investigation of nuclear power supercritical CO2 recompression cycle
    Du, Yadong
    Yang, Ce
    Hu, Chenxing
    Zhou, Mi
    NUCLEAR ENGINEERING AND DESIGN, 2020, 369 (369)
  • [10] Development and comparison of control schemes for the off-design operation of a recompression supercritical CO2 cycle with an intercooled main compressor
    Ma, Yuegeng
    Morosuk, Tatiana
    Liu, Ming
    Liu, Jiping
    ENERGY, 2020, 211 (211)