Off-plane quartz-enhanced photoacoustic spectroscopy

被引:8
|
作者
Luo, Huijian [1 ]
Li, Junming [1 ]
Lv, Haohua [1 ]
Xie, Jiabao [1 ]
Wang, Chenglong [1 ]
Lin, Haoyang [1 ]
Zhuang, Ruobin [1 ]
Zhu, Wenguo [1 ]
Zhong, Yongchun [1 ]
Kan, Ruifeng [2 ]
Yu, Jianhui [1 ]
Zheng, Huadan [1 ]
机构
[1] Jinan Univ, Guangdong Higher Educ Inst, Key Lab Optoelect Informat & Sensing Technol, Guangzhou 510632, Peoples R China
[2] Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Key Lab Environm Opt & Technol, Hefei 230031, Peoples R China
基金
中国国家自然科学基金;
关键词
TRACE GAS-DETECTION;
D O I
10.1364/OL.506650
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work, we developed off-plane quartz-enhanced photoacoustic spectroscopy (OP-QEPAS). In the OP-QEPAS the light beam went neither through the prong spacing of the quartz tuning fork (QTF) nor in the QTF plane. The light beam is in parallel with the QTF with an optimal distance, resulting in low background noise. A radial-cavity (RC) resonator was coupled with the QTF to enhance the photoacoustic signal by the radial resonance mode. By offsetting both the QTF and the laser position from the central axis, we enhance the effect of the acoustic radial resonance and prevent the noise generated by direct laser irradiation of the QTF. Compared to IP-QEPAS based on a bare QTF, the developed OP-QEPAS with a RC resonator showed a >10x signal-to-noise ratio (SNR) enhancement. The OP-QEPAS system has great advantages in the use of light emitting devices (LEDs), long-wavelength laser sources such as midinfrared quantum cascade lasers, and terahertz sources. When employing a LED as the excitation source, the noise level was suppressed by similar to 2 orders of magnitude. Furthermore, the radial and longitudinal resonance modes can be combined to further improve the sensor performance. (c)
引用
收藏
页码:3206 / 3209
页数:4
相关论文
共 50 条
  • [1] In-plane quartz-enhanced photoacoustic spectroscopy
    Ma, Yufei
    Qiao, Shunda
    Patimisco, Pietro
    Sampaolo, Angelo
    Wang, Yao
    Tittel, Frank K.
    Spagnolo, Vincenzo
    APPLIED PHYSICS LETTERS, 2020, 116 (06)
  • [2] Off-beam quartz-enhanced photoacoustic spectroscopy
    Liu, Kun
    Guo, Xiaoyong
    Yi, Hongming
    Chen, Weidong
    Zhang, Weijun
    Gao, Xiaoming
    OPTICS LETTERS, 2009, 34 (10) : 1594 - 1596
  • [3] Quartz-enhanced photoacoustic spectroscopy
    Kosterev, AA
    Bakhirkin, YA
    Curl, RF
    Tittel, FK
    OPTICS LETTERS, 2002, 27 (21) : 1902 - 1904
  • [4] Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs
    Boettger, S.
    Koehring, M.
    Willer, U.
    Schade, W.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2013, 113 (02): : 227 - 232
  • [5] Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs
    S. Böttger
    M. Köhring
    U. Willer
    W. Schade
    Applied Physics B, 2013, 113 : 227 - 232
  • [6] Differential quartz-enhanced photoacoustic spectroscopy
    Zhang, Chu
    Qiao, Shunda
    He, Ying
    Zhou, Sheng
    Qi, Lei
    Ma, Yufei
    APPLIED PHYSICS LETTERS, 2023, 122 (24)
  • [7] Quartz-Enhanced Photoacoustic Spectroscopy: A Review
    Patimisco, Pietro
    Scamarcio, Gaetano
    Tittel, Frank K.
    Spagnolo, Vincenzo
    SENSORS, 2014, 14 (04) : 6165 - 6206
  • [8] Quartz-Enhanced Photoacoustic and Photothermal Spectroscopy
    Wu, Hongpeng
    Sampaolo, Angelo
    APPLIED SCIENCES-BASEL, 2022, 12 (05):
  • [9] Theoretical analysis of off beam quartz-enhanced photoacoustic spectroscopy sensor
    Yi, Hongming
    Liu, Kun
    Sun, Shanwen
    Zhang, Weijun
    Gao, Xiaoming
    OPTICS COMMUNICATIONS, 2012, 285 (24) : 5306 - 5312
  • [10] Quartz tuning fork embedded off-beam quartz-enhanced photoacoustic spectroscopy
    Hu, Lien
    Zheng, Chuantao
    Zheng, Jie
    Wang, Yiding
    Tittel, Frank K.
    OPTICS LETTERS, 2019, 44 (10) : 2562 - 2565