H2S is an extremely noxious impurity generated from nature and chemical industrial processes. High performing H2S adsorbents are required for chemical industry and environmental engineering. Herein, alpha-, gamma-, and delta-MnO2 adsorbents with high sulfur capacity were synthesized through a continuous-flow approach with a microreactor system, achieving much higher efficiency than hydrothermal methods. The relationship between crystal structure and synthesis conditions such as residence time, reaction temperature, concentration of K+ in solution and reactant ratio is discussed. According to the H2S breakthrough tests at 150 degrees C, continuously prepared alpha-, gamma-, and delta-MnO2 exhibited sulfur capacities of 669.5, 193.8 and 607.6 mg S/g sorbent, respectively, which was at a high level among the reported adsorbents. Such enhanced performance is related to the large surface area and mesopore volume, high reducibility, and a large number of oxygen species with high reactivity and mobility. Manganese sulfide and elemental sulfur were formed after desulfurization, which indicated the reaction consisted of two steps: redox and sulfidation of the sorbents. This study provides an innovative design strategy for the construction of nanomaterials with high H2S adsorption performances.