Cryptocurrency Price Prediction Using Supervised Machine Learning Algorithms

被引:0
|
作者
Chaudhary, Divya [1 ]
Saroj, Sushil Kumar [1 ]
机构
[1] MMMUT, Dept Comp Sci & Engn, Gorakhpur 273010, India
关键词
Cryptocurrency; Bitcoin; Blockchain; Machine Learning; Price Prediction;
D O I
10.14201/adcaij.31490
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As a consequence of rising geo-economic issues, global currency values have declined during the last two years, stock markets have performed poorly, and investors have lost money. Consequently, there is a renewed interest in digital currencies. Cryptocurrency is a fresh kind of asset that has evolved as a result of fintech innovations, and it has provided a major research opportunity. Due to price fluctuation and dynamism, anticipating the price of cryptocurrencies is difficult. There are hundreds of cryptocurrencies in circulation around the world and the demand to use a prediction system for price forecasting has increased manifold. Hence, many developers have proposed machine learning algorithms for price forecasting. Machine learning is fast evolving, with several theoretical advances and applications in a variety of domains. This study proposes the use of three supervised machine learning methods, namely linear regression, support vector machine, and decision tree, to estimate the price of four prominent cryptocurrencies: Bitcoin, Ethereum, Dogecoin, and Bitcoin Cash. The purpose of this study is to compute and compare the precision of all three techniques over all four datasets.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Prediction of cryptocurrency's price using ensemble machine learning algorithms
    Balijepalli, N. S. S. Kiranmai
    Thangaraj, Viswanathan
    EUROPEAN JOURNAL OF MANAGEMENT AND BUSINESS ECONOMICS, 2025,
  • [2] Price Prediction of Ethereum Using Blockchain Historical and Exchange Data by Supervised Machine Learning Algorithms
    Narang, Harendra Kumar
    Shrirame, Vishal K.
    Kurrey, Bhupesh
    Proceedings - 2023 4th International Conference on Industrial Engineering and Artificial Intelligence, IEAI 2023, 2023, : 8 - 15
  • [3] A Novel Cryptocurrency Price Prediction Model Using GRU, LSTM and bi-LSTM Machine Learning Algorithms
    Hamayel, Mohammad J. J.
    Owda, Amani Yousef
    AI, 2021, 2 (04) : 477 - 496
  • [4] House Price Prediction Using Machine Learning Algorithms
    Vineeth, Naalla
    Ayyappa, Maturi
    Bharathi, B.
    SOFT COMPUTING SYSTEMS, ICSCS 2018, 2018, 837 : 425 - 433
  • [5] Prediction of Cryptocurrency Price using Time Series Data and Deep Learning Algorithms
    Nair, Michael
    Marie, Mohamed I.
    Abd-Elmegid, Laila A.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (08) : 338 - 347
  • [6] Prediction of Cardiac Disease using Supervised Machine Learning Algorithms
    Princy, R. Jane Preetha
    Parthasarathy, Saravanan
    Jose, P. Subha Hency
    Lakshminarayanan, Arun Raj
    Jeganathan, Selvaprabu
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 570 - 575
  • [7] Supervised prediction of production patterns using machine learning algorithms
    Kim, Jungyeon
    LINGUISTICS VANGUARD, 2024, 10 (01): : 629 - 640
  • [8] Comparative Analysis of Machine Learning Techniques for Cryptocurrency Price Prediction
    Salehi, Sara
    JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES, 2024, 48 (02) : 341 - 352
  • [9] Cryptocurrency price prediction using traditional statistical and machine-learning techniques: A survey
    Khedr, Ahmed M.
    Arif, Ifra
    Raj, Pravija P., V
    El-Bannany, Magdi
    Alhashmi, Saadat M.
    Sreedharan, Meenu
    INTELLIGENT SYSTEMS IN ACCOUNTING FINANCE & MANAGEMENT, 2021, 28 (01): : 3 - 34
  • [10] Cryptocurrency Price Prediction by Using Hybrid Machine Learning and Beetle Antennae Search Approach
    Petrovic, Aleksandar
    Strumberger, Ivana
    Bezdan, Timea
    Jassim, Hothefa Shaker
    Nassor, Said Suleiman
    2021 29TH TELECOMMUNICATIONS FORUM (TELFOR), 2021,