Advancements in Artificial Intelligence for the Diagnosis of Multidrug Resistance and Extensively Drug-Resistant Tuberculosis: A Comprehensive Review

被引:2
|
作者
Priya, K. Shanmuga [1 ]
Mani, Anbumaran Parivakkam [2 ]
Geethalakshmi, S. [3 ]
Yadav, Sankalp [4 ]
机构
[1] Dr MGR Educ & Res Inst, Sri Lalithambigai Med Coll & Hosp, Fac Med, Dept Pulmonol, Chennai, India
[2] Saveetha Univ, Saveetha Med Coll & Hosp, Saveetha Inst Med & Tech Sci, Dept Resp Med, Chennai, India
[3] Dr MGR Educ & Res Inst, Sri Lalithambigai Med Coll & Hosp, Dept Microbiol, Chennai, India
[4] Shri Madan Lal Khurana Chest Clin, Dept Med, New Delhi, India
关键词
mycobacterium tuberculosis (mtb); intestinal tb; multiple-drug resistant tuberculosis (mdr-tb); xdr-tb; extensively drug resistant tuberculosis; mdr tb; artificial intelligence; PULMONARY TUBERCULOSIS;
D O I
10.7759/cureus.60280
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Tuberculosis (TB) remains a significant global health concern, particularly with the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). Traditional methods for diagnosing drug resistance in TB are time-consuming and often lack accuracy, leading to delays in appropriate treatment initiation and exacerbating the spread of drug-resistant strains. In recent years, artificial intelligence (AI) techniques have shown promise in revolutionizing TB diagnosis, offering rapid and accurate identification of drug-resistant strains. This comprehensive review explores the latest advancements in AI applications for the diagnosis of MDR-TB and XDR-TB. We discuss the various AI algorithms and methodologies employed, including machine learning, deep learning, and ensemble techniques, and their comparative performances in TB diagnosis. Furthermore, we examine the integration of AI with novel diagnostic modalities such as whole-genome sequencing, molecular assays, and radiological imaging, enhancing the accuracy and efficiency of TB diagnosis. Challenges and limitations surrounding the implementation of AI in TB diagnosis, such as data availability, algorithm interpretability, and regulatory considerations, are also addressed. Finally, we highlight future directions and opportunities for the integration of AI into routine clinical practice for combating drug-resistant TB, ultimately contributing to improved patient outcomes and enhanced global TB control efforts.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Multidrug and extensively drug-resistant tuberculosis
    Maitre, T.
    Aubry, A.
    Jarlier, V.
    Robert, J.
    Veziris, N.
    Bernard, C.
    Sougakoff, W.
    Brossier, F.
    Cambau, E.
    Mougari, F.
    Raskine
    MEDECINE ET MALADIES INFECTIEUSES, 2017, 47 (01): : 3 - 10
  • [2] Multidrug-Resistant Tuberculosis and Extensively Drug-Resistant Tuberculosis
    Seung, Kwonjune J.
    Keshavjee, Salmaan
    Rich, Michael L.
    COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2015, 5 (09):
  • [3] Multidrug-resistant and extensively drug-resistant tuberculosis
    Chiang, C-Y.
    Yew, W. W.
    INTERNATIONAL JOURNAL OF TUBERCULOSIS AND LUNG DISEASE, 2009, 13 (03) : 304 - 311
  • [4] Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis
    Tabarsi, Payam
    Yadegarinia, Davood
    ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES, 2015, 3 (01):
  • [5] Diagnosis of multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis: Current standards and challenges
    Migliori, Giovanni Battista
    Matteelli, Alberto
    Cirillo, Daniela
    Pai, Madhukar
    CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY, 2008, 19 (02): : 169 - 172
  • [6] Carbapenems to Treat Multidrug and Extensively Drug-Resistant Tuberculosis: A Systematic Review
    Sotgiu, Giovanni
    D'Ambrosio, Lia
    Centis, Rosella
    Tiberi, Simon
    Esposito, Susanna
    Dore, Simone
    Spanevello, Antonio
    Migliori, Giovanni Battista
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (03)
  • [7] Extensively Drug-Resistant Tuberculosis: Principles of Resistance, Diagnosis, and Management
    Wilson, John W.
    Tsukayama, Dean T.
    MAYO CLINIC PROCEEDINGS, 2016, 91 (04) : 482 - 495
  • [8] Comprehensive treatment of extensively drug-resistant tuberculosis
    Mitnick, Carole D.
    Shin, Sonya S.
    Seung, Kwonjune J.
    Rich, Michael L.
    Atwood, Sidney S.
    Furin, Jennifer J.
    Fitzmaurice, Garrett M.
    Alcantara Viru, Felix A.
    Appleton, Sasha C.
    Bayona, Jaime N.
    Bonilla, Cesar A.
    Chalco, Katiuska
    Choi, Sharon
    Franke, Molly F.
    Fraser, Hamish S. F.
    Guerra, Dalia
    Hurtado, Rocio M.
    Jazayeri, Darius
    Joseph, Keith
    Llaro, Karim
    Mestanza, Lorena
    Mukherjee, Joia S.
    Munoz, Maribel
    Palacios, Eda
    Sanchez, Epifanio
    Sloutsky, Alexander
    Becerra, Mercedes C.
    NEW ENGLAND JOURNAL OF MEDICINE, 2008, 359 (06): : 563 - 574
  • [9] Pyrosequencing for diagnosis of multidrug and extensively drug-resistant tuberculosis: A systemic review and meta-analysis
    Getachew, Emnet
    Adebeta, Tsegaye
    Gebrie, Desye
    Charlie, Loveness
    Said, Bibie
    Assefa, Dawit Getachew
    Wanjiru, Cathrine Lydiah
    Zeleke, Eden Dagnachew
    Tesfahunei, Hanna Amanuel
    Abebe, Mekdelawit
    Joseph, Michele
    Manyazewal, Tsegahun
    JOURNAL OF CLINICAL TUBERCULOSIS AND OTHER MYCOBACTERIAL DISEASES, 2021, 24
  • [10] Multidrug- and Extensively Drug-Resistant Tuberculosis, Germany
    Eker, Barbara
    Ortmann, Johannes
    Migliori, Giovanni B.
    Sotgiu, Giovanni
    Muetterlein, Ralf
    Centis, Rosella
    Hoffmann, Harald
    Kirsten, Detlef
    Schaberg, Tom
    Ruesch-Gerdes, Sabine
    Lange, Christoph
    EMERGING INFECTIOUS DISEASES, 2008, 14 (11) : 1700 - 1706