Crossing cubic Lie algebras

被引:1
|
作者
Al-Masarwah, Anas [1 ]
Kdaisat, Nadeen [2 ]
Abuqamar, Majdoleen [3 ]
Alsager, Kholood [4 ]
机构
[1] Ajloun Natl Univ, Fac Sci, Dept Math, POB 43, Ajloun, Jordan
[2] Yarmouk Univ, Dept Math, Shafiq Irshidat St, Irbid 21163, Jordan
[3] Jadara Univ, Fac Sci & Informat Technol, Dept Math, Irbid 21110, Jordan
[4] Qassim Univ, Coll Sci, Dept Math, Buraydah, Saudi Arabia
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 08期
关键词
Lie algebras; crossing cubic Lie algebras; crossing cubic fields; crossing cubic solvable Lie algebras; crossing cubic nilpotent Lie algebras; fuzzy logic; IDEALS;
D O I
10.3934/math.20241075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An interval-valued fuzziness structure is an effective approach addressing ambiguity and for expressing people's hesitation in everyday situations. An N-structure is a novel technique for solving practical problems. This is beneficial for resolving a variety of issues, and a lot of progress is being made right now. In order to develop crossing cubic structures (CCSs), Jun et al. amalgamate interval-valued fuzziness and N-structures. In this manuscript, our main contribution is to originate the concepts of crossing cubic (CC) Lie algebra, CC Lie sub-algebra, ideal, and homomorphism. We investigate some properties of these concepts. In a Lie algebra, the construction of a quotient Lie algebra via the CC Lie ideal is provided. Furthermore, the CC isomorphism theorems are presented.
引用
收藏
页码:22112 / 22129
页数:18
相关论文
共 50 条
  • [1] Algebraic Aspects of Crossing Cubic BE-Algebras
    Abd Al-Rahman, Noor Bani
    Al-Masarwah, Anas
    Alkouri, Abd Ulazeez
    FUZZY INFORMATION AND ENGINEERING, 2025, 17 (01) : 20 - 38
  • [2] 3-Lie Algebras Realized by Cubic Matrices
    Ruipu BAI
    Hui LIU
    Meng ZHANG
    ChineseAnnalsofMathematics(SeriesB), 2014, 35 (02) : 261 - 270
  • [3] 3-Lie algebras realized by cubic matrices
    Ruipu Bai
    Hui Liu
    Meng Zhang
    Chinese Annals of Mathematics, Series B, 2014, 35 : 261 - 270
  • [4] 3-Lie algebras realized by cubic matrices
    Bai, Ruipu
    Liu, Hui
    Zhang, Meng
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2014, 35 (02) : 261 - 270
  • [5] Approximate Cubic Lie Derivations on ρ-Complete Convex Modular Algebras
    Kim, Hark-Mahn
    Shin, Hwan-Yong
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [6] The Cubic Dirac Operator for Infinite-Dimensonal Lie Algebras
    Meinrenken, Eckhard
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2011, 63 (06): : 1364 - 1387
  • [7] A Fixed Point Approach to Stability of Cubic Lie Derivatives in Banach Algebras
    Kim, Seong Sik
    Rassias, John Michael
    Abdou, Afrah A. N.
    Cho, Yeol Je
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 19 (02) : 378 - 388
  • [8] Simple Lie Algebras and Complete Lie Algebras
    杨奇
    孟道骥
    东北数学, 1996, (04) : 2 - 6
  • [9] Trigonometric Lie algebras, affine Lie algebras, and vertex algebras
    Li, Haisheng
    Tan, Shaobin
    Wang, Qing
    ADVANCES IN MATHEMATICS, 2020, 363
  • [10] Elementary Lie algebras and Lie A-algebras
    Towers, David A.
    Varea, Vicente R.
    JOURNAL OF ALGEBRA, 2007, 312 (02) : 891 - 901