The tensor Harish-Chandra-Itzykson-Zuber integral I: Weingarten calculus and a generalization of monotone Hurwitz numbers

被引:0
|
作者
Collins, Benoit [1 ]
Gurau, Razvan [2 ]
Lionni, Luca [3 ]
机构
[1] Kyoto Univ, Grad Sch Sci, Dept Math, Kyoto 6068502, Japan
[2] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany
[3] Radboud Univ Nijmegen, IMAPP, NL-6525 AJ Nijmegen, Netherlands
基金
荷兰研究理事会; 欧洲研究理事会;
关键词
Harish-Chandra-Itzykson-Zuber integral; tensor HCIZ integral; Weingarten calculus; monotone Hurwitz numbers; enumerative geometry; branched coverings; ramified coverings; nodal surfaces; bouquet of spheres; constellations; RANDOM MATRICES; INTERSECTION THEORY; ENUMERATION; UNITARY; CURVES; SPACES;
D O I
10.4171/JEMS/1315
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a generalization of the Harish-Chandra-Itzykson-Zuber integral to tensors and its expansion in terms of trace invariants of the two external tensors. This gives rise to natural generalizations of monotone double Hurwitz numbers, which count certain families of constellations. We find an expression of these numbers in terms of monotone simple Hurwitz numbers, thereby also providing expressions for monotone double Hurwitz numbers of arbitrary genus in terms of the single ones. We give an interpretation of the different combinatorial quantities at play in terms of enumeration of nodal surfaces. In particular, our generalization of Hurwitz numbers is shown to count certain isomorphism classes of branched coverings of a bouquet of D 2 -spheres that touch at one common non -branch node.
引用
收藏
页码:1851 / 1897
页数:47
相关论文
共 7 条
  • [1] The Tensor Harish-Chandra-Itzykson-Zuber Integral II: Detecting Entanglement in Large Quantum Systems
    Collins, Benoit
    Gurau, Razvan
    Lionni, Luca
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 401 (01) : 669 - 716
  • [2] Matrix Product Ensembles of Hermite Type and the Hyperbolic Harish-Chandra-Itzykson-Zuber Integral
    Forrester, P. J.
    Ipsen, J. R.
    Liu, Dang-Zheng
    ANNALES HENRI POINCARE, 2018, 19 (05): : 1307 - 1348
  • [3] Asymptotics of Harish-Chandra-Itzykson-Zuber integrals and free probability theory
    Tanaka, Toshiyuki
    INTERNATIONAL WORKSHOP ON STATISTICAL-MECHANICAL INFORMATICS 2007 (IW-SMI 2007), 2008, 95
  • [4] Instanton Approach to Large N Harish-Chandra-Itzykson-Zuber Integrals
    Bun, J.
    Bouchaud, J. P.
    Majumdar, S. N.
    Potters, M.
    PHYSICAL REVIEW LETTERS, 2014, 113 (07)
  • [5] The Tensor Harish-Chandra–Itzykson–Zuber Integral II: Detecting Entanglement in Large Quantum Systems
    Benoît Collins
    Razvan Gurau
    Luca Lionni
    Communications in Mathematical Physics, 2023, 401 : 669 - 716
  • [6] Sampling Matrices from Harish-Chandra-Itzykson-Zuber Densities with Applications to Quantum Inference and Differential Privacy
    Leake, Jonathan
    McSwiggen, Colin
    Vishnoi, Nisheeth K.
    STOC '21: PROCEEDINGS OF THE 53RD ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2021, : 1384 - 1397
  • [7] Matrix Product Ensembles of Hermite Type and the Hyperbolic Harish-Chandra–Itzykson–Zuber Integral
    P. J. Forrester
    J. R. Ipsen
    Dang-Zheng Liu
    Annales Henri Poincaré, 2018, 19 : 1307 - 1348