STCS-Net: a medical image segmentation network that fully utilizes multi-scale information

被引:2
|
作者
Ma, Pengchong [1 ,2 ]
Wang, Guanglei [1 ,2 ]
Li, Tong [1 ,2 ]
Zhao, Haiyang [1 ]
Li, Yan [1 ]
Wang, Hongrui [1 ]
机构
[1] Hebei Univ, Coll Elect & Informat Engn, Baoding 071002, Hebei, Peoples R China
[2] Hebei Key Lab Precise Imaging Inflammat Related Tu, Baoding 071000, Hebei, Peoples R China
来源
BIOMEDICAL OPTICS EXPRESS | 2024年 / 15卷 / 05期
基金
中国国家自然科学基金;
关键词
U-NET;
D O I
10.1364/BOE.517737
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In recent years, significant progress has been made in the field of medical image segmentation through the application of deep learning and neural networks. Numerous studies have focused on optimizing encoders to extract more comprehensive key information. However, the importance of decoders in directly influencing the final output of images cannot be overstated. The ability of decoders to effectively leverage diverse information and further refine crucial details is of paramount importance. This paper proposes a medical image segmentation architecture named STCS-Net. The designed decoder in STCS-Net facilitates multi -scale filtering and correction of information from the encoder, thereby enhancing the accuracy of extracting vital features. Additionally, an information enhancement module is introduced in skip connections to highlight essential features and improve the inter -layer information interaction capabilities. Comprehensive evaluations on the ISIC2016, ISIC2018, and Lung datasets validate the superiority of STCS-Net across different scenarios. Experimental results demonstrate the outstanding performance of STCS-Net on all three datasets. Comparative experiments highlight the advantages of our proposed network in terms of accuracy and parameter efficiency. Ablation studies confirm the effectiveness of the introduced decoder and skip connection module. This research introduces a novel approach to the field of medical image segmentation, providing new perspectives and solutions for future developments in medical image processing and analysis. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:2811 / 2831
页数:21
相关论文
共 50 条
  • [1] MTC-Net: Multi-scale feature fusion network for medical image segmentation
    Ren S.
    Wang Y.
    Journal of Intelligent and Fuzzy Systems, 2024, 46 (04): : 8729 - 8740
  • [2] MSAR-Net: A multi-scale attention residual network for medical image segmentation
    Li, Xiaoheng
    Chen, Cheng
    Chen, Yunqing
    Yu, Ming-an
    Xiao, Ruoxiu
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 104
  • [3] Medical image segmentation method based on multi-scale feature and U-net network
    Wang, Jingquan
    INTERNET TECHNOLOGY LETTERS, 2024, 7 (05)
  • [4] LM-Net: A light-weight and multi-scale network for medical image segmentation
    Lu, Zhenkun
    She, Chaoyin
    Wang, Wei
    Huang, Qinghua
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 168
  • [5] MSINET: Multi-scale Interconnection Network for Medical Image Segmentation
    Xu, Zhengke
    Shan, Xinxin
    Wen, Ying
    ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT IV, 2024, 14498 : 274 - 286
  • [6] MMS-Net: Multi-level multi-scale feature extraction network for medical image segmentation
    Zhao, Chang
    Lv, Wenbing
    Zhang, Xiang
    Yu, Zimin
    Wang, Shunfang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86
  • [7] MC-Net: multi-scale context-attention network for medical CT image segmentation
    Haiying Xia
    Mingjun Ma
    Haisheng Li
    Shuxiang Song
    Applied Intelligence, 2022, 52 : 1508 - 1519
  • [8] MC-Net: multi-scale context-attention network for medical CT image segmentation
    Xia, Haiying
    Ma, Mingjun
    Li, Haisheng
    Song, Shuxiang
    APPLIED INTELLIGENCE, 2022, 52 (02) : 1508 - 1519
  • [9] MUNet: A Multi-scale U-Net Framework for Medical Image Segmentation
    Zhang, Wentao
    Cheng, Hao
    Gan, Jun
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [10] Multi-scale feature pyramid fusion network for medical image segmentation
    Bing Zhang
    Yang Wang
    Caifu Ding
    Ziqing Deng
    Linwei Li
    Zesheng Qin
    Zhao Ding
    Lifeng Bian
    Chen Yang
    International Journal of Computer Assisted Radiology and Surgery, 2023, 18 : 353 - 365