Epileptic Seizure Prediction Using Spatiotemporal Feature Fusion on EEG

被引:5
|
作者
Ji, Dezan [1 ,2 ]
He, Landi [1 ,2 ]
Dong, Xingchen [1 ,2 ]
Li, Haotian [1 ,2 ]
Zhong, Xiangwen [1 ,2 ]
Liu, Guoyang [1 ,2 ]
Zhou, Weidong [1 ]
机构
[1] Shandong Univ, Sch Integrated Circuits, Jinan 250100, Peoples R China
[2] Shandong Univ, Shenzhen Inst, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
Electroencephalography; Graph Attention Network; Temporal Convolutional Network; seizure prediction; NEURAL-NETWORK; GRAPH; SVM;
D O I
10.1142/S0129065724500412
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electroencephalography (EEG) plays a crucial role in epilepsy analysis, and epileptic seizure prediction has significant value for clinical treatment of epilepsy. Currently, prediction methods using Convolutional Neural Network (CNN) primarily focus on local features of EEG, making it challenging to simultaneously capture the spatial and temporal features from multi-channel EEGs to identify the preictal state effectively. In order to extract inherent spatial relationships among multi-channel EEGs while obtaining their temporal correlations, this study proposed an end-to-end model for the prediction of epileptic seizures by incorporating Graph Attention Network (GAT) and Temporal Convolutional Network (TCN). Low-pass filtered EEG signals were fed into the GAT module for EEG spatial feature extraction, and followed by TCN to capture temporal features, allowing the end-to-end model to acquire the spatiotemporal correlations of multi-channel EEGs. The system was evaluated on the publicly available CHB-MIT database, yielding segment-based accuracy of 98.71%, specificity of 98.35%, sensitivity of 99.07%, and F1-score of 98.71%, respectively. Event-based sensitivity of 97.03% and False Positive Rate (FPR) of 0.03/h was also achieved. Experimental results demonstrated this system can achieve superior performance for seizure prediction by leveraging the fusion of EEG spatiotemporal features without the need of feature engineering.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] EPILEPTIC SEIZURE PREDICTION USING THE SPATIOTEMPORAL CORRELATION STRUCTURE OF INTRACRANIAL EEG
    Williamson, James R.
    Bliss, Daniel W.
    Browne, David W.
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 665 - 668
  • [2] A Study of EEG Feature Complexity in Epileptic Seizure Prediction
    Jemal, Imene
    Mitiche, Amar
    Mezghani, Neila
    APPLIED SCIENCES-BASEL, 2021, 11 (04): : 1 - 15
  • [3] Epileptic Seizure Prediction by Exploiting Spatiotemporal Relationship of EEG Signals Using Phase Correlation
    Parvez, Mohammad Zavid
    Paul, Manoranjan
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2016, 24 (01) : 158 - 168
  • [4] Epileptic seizure prediction using EEG peripheral channels
    Salvador, Carolina
    Felizardo, Virginie
    Zacarias, Henriques
    Souza-Pereira, Leonice
    Pourvahab, Mehran
    Pombo, Nuno
    Garcia, Nuno M.
    2023 IEEE 7TH PORTUGUESE MEETING ON BIOENGINEERING, ENBENG, 2023, : 60 - 63
  • [5] Seizure prediction using EEG spatiotemporal correlation structure
    Williamson, James R.
    Bliss, Daniel W.
    Browne, David W.
    Narayanan, Jaishree T.
    EPILEPSY & BEHAVIOR, 2012, 25 (02) : 230 - 238
  • [6] Epileptic Seizure Prediction Using Convolutional Neural Networks and Fusion Features on Scalp EEG Signals
    Lan, Qixin
    Yao, Bin
    Qing, Tao
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2023, E106D (05) : 821 - 823
  • [7] EEG ANALYSIS AND EPILEPTIC SEIZURE PREDICTION
    VIGLIONE, SS
    WALSH, GO
    YEAGER, CL
    SPIRE, JP
    EPILEPSIA, 1977, 18 (02) : 289 - 289
  • [8] Epileptic Seizure Prediction in EEG Signals using EMD and DWT
    Bekbalanova, Marzhan
    Zhunis, Aliya
    Duisebekov, Zhasdauren
    2019 15TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTER AND COMPUTATION (ICECCO), 2019,
  • [9] Seizure Prediction in Epileptic Patients Using EEG and Anomaly Detection
    Mirzaei, Erfan
    Shamsollahi, Mohammad Bagher
    2022 29TH NATIONAL AND 7TH INTERNATIONAL IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING, ICBME, 2022, : 114 - 118
  • [10] Epileptic Seizure Prediction from EEG Signals Using DenseNet
    Jana, Ranjan
    Bhattacharyya, Siddhartha
    Das, Swagatam
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 604 - 609