Impacts of hydrometeorological regime shifts on drought Propagation: The meteorological to hydrological perspective

被引:0
|
作者
Wu, Jiefeng [1 ,2 ]
Zhang, Xuan [3 ]
Wang, Gaoxu [3 ]
Wu, Wei [3 ]
Zhang, Dejian [4 ]
Lan, Tian [5 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Key Lab Hydrometeorol Disaster Mech & Warning, Minist Water Resources, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Hydrol & Water Resources, Nanjing 210044, Peoples R China
[3] Nanjing Hydraul Res Inst, Natl Key Lab Water Disaster Prevent, Nanjing 210098, Peoples R China
[4] Xiamen Univ Technol, Coll Comp & Informat Engn, Xiamen 361000, Peoples R China
[5] Changan Univ, Sch Water & Environm, Xian 710000, Peoples R China
基金
中国博士后科学基金;
关键词
Drought propagation; Regime shifts; Non-linear relationship; Thresholds; Hydrometeorological; CLIMATE-CHANGE; RIVER-BASIN; STREAMFLOW;
D O I
10.1016/j.jhydrol.2024.131476
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Exploring drought propagation relationships and thresholds is crucial for drought control and mitigation. However, previous studies have overlooked the impacts of regime shifts in trends of hydrometeorological variables over time on drought propagation and its thresholds. This study proposes an integrated framework focusing on drought propagation from meteorological to hydrological drought. The regime shift periods, both increasing and decreasing trends, were identified using the cumulative difference curve-rank test on precipitation and streamflow at an annual time scale. The Standardized Precipitation Index (SPI) and Standardized Streamflow Index (SSI) were used as meteorological and hydrological drought indices, respectively. Additionally, the propagation relationships and thresholds from meteorological drought to hydrological drought were identified and compared across various regime shift periods. The integrated framework's applicability was verified by applying it to the Three-Rivers Headwaters region of China, which encompasses the Yellow River, Yangtze River, and Lancang River. This region is strategically important for China and has relatively little human activity. The framework revealed the variability in drought propagation and thresholds during different regime shift periods. The response sensitivity of SSI to SPI and the probabilities and thresholds for propagation from meteorological to hydrological drought differed between periods of increasing and decreasing trends in hydrometeorological variables. When regime shift characteristics were considered, the thresholds for meteorological drought propagating to hydrological drought were 2.81 %-16.90 % higher. These results indicated that, when examining drought propagation relationships and thresholds, accounting for regime shifts in hydrometeorological variables can improve early drought warning and enhance drought control and mitigation efforts.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Propagation characteristics of meteorological drought to hydrological drought in China
    Luo, Ding
    Yang, Xiaoli
    Xie, Lingfeng
    Ye, Zhoubing
    Ren, Liliang
    Zhang, Linyan
    Wu, Fan
    Jiao, Donglai
    JOURNAL OF HYDROLOGY, 2025, 656
  • [2] Propagation of Drought: From Meteorological Drought to Agricultural and Hydrological Drought
    Wang, Wen
    Ertsen, Maurits W.
    Svoboda, Mark D.
    Hafeez, Mohsin
    ADVANCES IN METEOROLOGY, 2016, 2016
  • [3] A global perspective on propagation from meteorological drought to hydrological drought during 1902-2014
    Shi, Haiyun
    Zhou, Zhaoqiang
    Liu, Lin
    Liu, Suning
    ATMOSPHERIC RESEARCH, 2022, 280
  • [4] Evaluation of the impacts of human activities on propagation from meteorological drought to hydrological drought in the Weihe River Basin, China
    Zhang, Te
    Su, Xiaoling
    Zhang, Gengxi
    Wu, Haijiang
    Wang, Guanzhi
    Chu, Jiangdong
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 819
  • [5] Drought hazard transferability from meteorological to hydrological propagation
    Gu, Lei
    Chen, Jie
    Yin, Jiabo
    Xu, Chong-Yu
    Chen, Hua
    JOURNAL OF HYDROLOGY, 2020, 585 (585)
  • [6] Propagation thresholds of meteorological drought for triggering hydrological drought at various levels
    Guo, Yi
    Huang, Shengzhi
    Huang, Qiang
    Leng, Guoyong
    Fang, Wei
    Wang, Lu
    Wang, Hao
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 712
  • [7] Formative drought rate to quantify propagation from meteorological to hydrological drought
    Yildirim, Isilsu
    Aksoy, Hafzullah
    Hrachowitz, Markus
    HYDROLOGICAL PROCESSES, 2024, 38 (07)
  • [8] Triggering thresholds and influential factors in the propagation of meteorological drought to hydrological drought
    Zhen, Na
    Yao, Rui
    Sun, Peng
    Zhang, Qiang
    Ge, Chenhao
    Shen, Han
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2025, 57
  • [9] Characteristics of propagation from meteorological drought to hydrological drought in Southwest China
    Shi P.
    Tang H.
    Qu S.
    Wen T.
    Zhao L.
    Li Q.
    Water Resources Protection, 2023, 39 (01) : 49 - 56
  • [10] Propagation and dynamic change of meteorological drought to hydrological drought in different seasons
    Liu Y.
    Huang S.
    Fang W.
    Ma L.
    Zheng X.
    Huang Q.
    Shuili Xuebao/Journal of Hydraulic Engineering, 2021, 52 (01): : 93 - 102