Prediction of the Cohesion Energy, Shear Modulus and Hardness of Single-Phase Metals and High-Entropy Alloys

被引:1
|
作者
Temesi, Otto K. [1 ,2 ,3 ]
Varga, Lajos K. [4 ]
Chinh, Nguyen Q. [3 ]
Vitos, Levente [4 ,5 ]
机构
[1] H ION Kft, Konkoly Thege Mikl Ut 29-33, H-1121 Budapest, Hungary
[2] SMARTUS Zrt, Gyar Utca 2, H-2040 Budaors, Hungary
[3] Eotvos Lorand Univ, Dept Mat Phys, Pazmany Peter Setany 1-A, H-1117 Budapest, Hungary
[4] HUN REN Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary
[5] Royal Inst Technol, Dept Mat Sci & Engn, Stockholm, Sweden
基金
匈牙利科学研究基金会;
关键词
high-entropy alloys; compositions design; shear modulus; cohesion energy; hardness; MECHANICAL-PROPERTIES; ELASTIC PROPERTIES; AL ADDITION; MICROSTRUCTURE; EVOLUTION; ELEMENTS;
D O I
10.3390/ma17112728
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to facilitate the prediction of some physical properties, we propose several simple formulas based on two parameters only, the metallic valence and metallic atomic radii. Knowing the composition, for single-phase alloys, the average parameters can be calculated by the rule of mixture. The input parameters can be obtained from tabulated databases. Adopting from the literature the results of Coulomb crystal model for metals and single-phase high-entropy alloys, we have derived formulas for the shear modulus (G) and the cohesion energy (Ecoh). Based on these parameters separately, we set up two formulas to estimate the hardness in the case of pure metals. For single-phase (solid-solution) HEAs, by simplifying the Maresca and Curtin model, we obtained a formula for estimating the hardness, which takes into account the atomic misfit in addition to G. The maximal hardness for single-phase HEA is approximately 600 kg/mm2 and is obtained for a composition with a valence electron concentration of approximately 6 divided by 7.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Single-phase high-entropy alloys - an overview
    Kozak, Roksolana
    Sologubenko, Alla
    Steurer, Walter
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE-CRYSTALLINE MATERIALS, 2015, 230 (01): : 55 - 68
  • [2] A map of single-phase high-entropy alloys
    Wei Chen
    Antoine Hilhorst
    Georgios Bokas
    Stéphane Gorsse
    Pascal J. Jacques
    Geoffroy Hautier
    Nature Communications, 14
  • [3] A map of single-phase high-entropy alloys
    Chen, Wei
    Hilhorst, Antoine
    Bokas, Georgios
    Gorsse, Stephane
    Jacques, Pascal J.
    Hautier, Geoffroy
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [4] Single-phase high-entropy alloys - A critical update
    Steurer, Walter
    MATERIALS CHARACTERIZATION, 2020, 162
  • [5] Empirical design of single phase high-entropy alloys with high hardness
    Tian, Fuyang
    Varga, Lajos K.
    Chen, Nanxian
    Shen, Jiang
    Vitos, Levente
    INTERMETALLICS, 2015, 58 : 1 - 6
  • [6] Estimation of Shear Modulus and Hardness of High-Entropy Alloys Made from Early Transition Metals Based on Bonding Parameters
    Temesi, Otto
    Varga, Lajos K.
    Li, Xiaoqing
    Vitos, Levente
    Chinh, Nguyen Q.
    MATERIALS, 2023, 16 (06)
  • [7] Single-phase high-entropy intermetallic compounds(HEICs): bridging high-entropy alloys and ceramics
    Naixie Zhou
    Sicong Jiang
    Timothy Huang
    Mingde Qin
    Tao Hu
    Jian Luo
    Science Bulletin, 2019, 64 (12) : 856 - 864
  • [8] A Novel Approach to Produce Single-Phase High-Entropy Alloys
    P. Chakraborty
    N. K. Sarkar
    B. Vishwanadh
    R. Tewari
    Transactions of the Indian National Academy of Engineering, 2024, 9 (3) : 703 - 708
  • [9] Single-phase high-entropy intermetallic compounds (HEICs): bridging high-entropy alloys and ceramics
    Zhou, Naixie
    Jiang, Sicong
    Huang, Timothy
    Qin, Mingde
    Hu, Tao
    Luo, Jian
    SCIENCE BULLETIN, 2019, 64 (12) : 856 - 864
  • [10] Criteria for Predicting the Formation of Single-Phase High-Entropy Alloys
    Troparevsky, M. Claudia
    Morris, James R.
    Kent, Paul R. C.
    Lupini, Andrew R.
    Stocks, G. Malcolm
    PHYSICAL REVIEW X, 2015, 5 (01):