Minimum Residual BAS Iteration Method for Solving the System of Absolute Value Equations

被引:0
|
作者
Dai, Yan-Xia [1 ]
Yan, Ren-Yi [2 ]
Yang, Ai-Li [1 ]
机构
[1] Hainan Normal Univ, Sch Math & Stat, Haikou 571158, Hainan, Peoples R China
[2] Hainan Normal Univ, Sch Econ & Management, Haikou 571158, Hainan, Peoples R China
基金
中国国家自然科学基金;
关键词
Absolute value equations (AVEs); Block-diagonal and anti-block-diagonal splitting (BAS); Minimum residual; Minimum residual BAS (MRBAS) iteration; Convergence analysis; GENERALIZED NEWTON METHOD;
D O I
10.1007/s42967-024-00403-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, by applying the minimum residual technique to the block-diagonal and anti-block-diagonal splitting (BAS) iteration scheme, an iteration method named minimum residual BAS (MRBAS) is proposed to solve a two-by-two block system of nonlinear equations arising from the reformulation of the system of absolute value equations (AVEs). The theoretical analysis shows that the MRBAS iteration method is convergent under suitable conditions. Numerical results demonstrate the feasibility and the effectiveness of the MRBAS iteration method.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A modified fixed point iteration method for solving the system of absolute value equations
    Yu, Dongmei
    Chen, Cairong
    Han, Deren
    OPTIMIZATION, 2022, 71 (03) : 449 - 461
  • [2] A generalization of the AOR iteration method for solving absolute value equations
    Li, Cui-Xia
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (03): : 1062 - 1074
  • [3] Residual Iterative Method for Solving Absolute Value Equations
    Noor, Muhammad Aslam
    Iqbal, Javed
    Al-Said, Eisa
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [4] Modified BAS iteration method for absolute value equation
    Li, Cui-Xia
    Yong, Long-Quan
    AIMS MATHEMATICS, 2022, 7 (01): : 606 - 616
  • [5] On the SOR-like iteration method for solving absolute value equations
    Guo, Peng
    Wu, Shi-Liang
    Li, Cui-Xia
    APPLIED MATHEMATICS LETTERS, 2019, 97 : 107 - 113
  • [6] SOR-like iteration method for solving absolute value equations
    Ke, Yi-Fen
    Ma, Chang-Feng
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 311 : 195 - 202
  • [7] The New Iteration Methods for Solving Absolute Value Equations
    Ali, Rashid
    Pan, Kejia
    APPLICATIONS OF MATHEMATICS, 2023, 68 (01) : 109 - 122
  • [8] The new iteration methods for solving absolute value equations
    Rashid Ali
    Kejia Pan
    Applications of Mathematics, 2023, 68 : 109 - 122
  • [9] A new two-parameter iteration method for solving absolute value equations
    Xiao, Xiao-Yong
    Zhang, Miao
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2025, : 631 - 652
  • [10] On the Alternative SOR-like Iteration Method for Solving Absolute Value Equations
    Zhang, Yiming
    Yu, Dongmei
    Yuan, Yifei
    SYMMETRY-BASEL, 2023, 15 (03):