TENSOR PRODUCTS AND SOLUTIONS TO TWO HOMOLOGICAL CONJECTURES FOR ULRICH MODULES

被引:0
|
作者
Miranda-neto, Cleto b. [1 ]
Souza, Thyago s. [1 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051900 Pessoa, PB, Brazil
关键词
Tensor product; Ulrich module; maximal Cohen-Macaulay module; free module; Auslander-Reiten conjecture; GORENSTEIN RINGS; IDEALS; DIMENSION; RIGIDITY;
D O I
10.1090/proc/16838
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. We address the problem of when the tensor product of two finitely generated modules over a Cohen-Macaulay local ring is Ulrich in the generalized sense of Goto et al., and in particular in the original sense from the 80's. As applications, besides freeness criteria for modules, characterizations of complete intersections, and an Ulrich-based approach to the long-standing Berger's conjecture, we give simple proofs that two celebrated homological conjectures, namely the Huneke-Wiegand and the Auslander-Reiten problems, are true for the class of Ulrich modules.
引用
收藏
页码:2777 / 2789
页数:13
相关论文
共 50 条