Design of Multivariate Biological Metal-Organic Frameworks: Toward Mimicking Active Sites of Enzymes

被引:2
|
作者
Navarro-Alapont, Javier [1 ]
Negro, Cristina [1 ]
Navalon, Sergio [2 ]
Dhakshinamoorthy, Amarajothi [2 ]
Armentano, Donatella [3 ]
Ferrando-Soria, Jesus [1 ]
Pardo, Emilio [2 ]
机构
[1] Univ Valencia, Inst Ciencia Mol ICMol, Valencia 46980, Spain
[2] Univ Politecn Valencia, Dept Quim, Valencia 46022, Spain
[3] Univ Calabria, Dipartimento Chim & Tecnol Chim CTC, I-87036 Cosenza, Italy
基金
欧洲研究理事会;
关键词
EMBEDDING ENZYMES; CATALASE; MOF; IMMOBILIZATION; ENCAPSULATION; STABILITY; CHEMISTRY; MECHANISM; PLATFORM; CAGES;
D O I
10.1021/acs.inorgchem.4c01988
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Mimicking enzymatic processes carried out by natural enzymes, which are highly efficient biocatalysts with key roles in living organisms, attracts much interest but constitutes a synthetic challenge. Biological metal-organic frameworks (bioMOFs) are potential candidates to be enzyme catalysis mimics, as they offer the possibility to combine biometals and biomolecules into open-framework porous structures capable of simulating the catalytic pockets of enzymes. In this work, we first study the catalase activity of a previously reported bioMOF, derived from the amino acid L-serine, with formula {(CaCu6II)-Cu-II[(S,S)-serimox](3)(OH)(2)(H2O)} <middle dot> 39H(2)O (1) (serimox = bis[(S)-serine]oxalyl diamide), which is indeed capable to mimic catalase enzymes, in charge of preventing cell oxidative damage by decomposing, efficiently, hydrogen peroxide to water and oxygen (2H(2)O(2) -> 2 H2O + O-2). With these results in hand, we then prepared a new multivariate bioMOF (MTV-bioMOF) that combines two different types of bioligands derived from L-serine and L-histidine amino acids with formula (CaCu6II)-Cu-II[(S,S)-serimox](2)[(S,S)-hismox](1)(OH)(2)(H2O)}<middle dot>27H(2)O (2) (hismox = bis[(S)-histidine]oxalyl diamide ligand). MTV-bioMOF 2 outperforms 1 degrading hydrogen peroxide, confirming the importance of the amino acid residue from the histidine amino acid acting as a nucleophile in the catalase degradation mechanism. Despite displaying a more modest catalytic behavior than other reported MOF composites, in which the catalase enzyme is immobilized inside the MOF, this work represents the first example of a MOF in which an attempt is made to replicate the active center of the catalase enzyme with its constituent elements and is capable of moderate catalytic activity.
引用
收藏
页码:13681 / 13688
页数:8
相关论文
共 50 条
  • [1] Metal-organic frameworks as catalysts: the role of metal active sites
    Valvekens, Pieterjan
    Vermoortele, Frederik
    De Vos, Dirk
    CATALYSIS SCIENCE & TECHNOLOGY, 2013, 3 (06) : 1435 - 1445
  • [2] Multivariate metal-organic frameworks
    Aasif Helal
    Zain H.Yamani
    Kyle E.Cordova
    Omar M.Yaghi
    National Science Review, 2017, 4 (03) : 296 - 298
  • [3] Multivariate metal-organic frameworks
    Helal, Aasif
    Yamani, Zain H.
    Cordova, Kyle E.
    Yaghi, Omar M.
    NATIONAL SCIENCE REVIEW, 2017, 4 (03) : 296 - 298
  • [4] Design and computational study of active sites in metal-organic frameworks for oxidation of alkanes
    Snurr, Randall
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [5] Toward a Rational Design of Titanium Metal-Organic Frameworks
    Wang, Sujing
    Reinsch, Helge
    Heymans, Nicolas
    Wahiduzzaman, Mohammad
    Martineau-Corcos, Charlotte
    De Weireld, Guy
    Maurin, Guillaume
    Serre, Christian
    MATTER, 2020, 2 (02) : 440 - 450
  • [6] Engineering of catalytically active sites in photoactive metal-organic frameworks
    Rassu, Pietro
    Ma, Xiaojie
    Wang, Bo
    COORDINATION CHEMISTRY REVIEWS, 2022, 465
  • [7] Single-atom active sites on metal-organic frameworks
    Ranocchiari, Marco
    Lothschuetz, Christian
    Grolimund, Daniel
    van Bokhoven, Jeroen Anton
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2143): : 1985 - 1999
  • [8] Engineering of Active Sites in Metal-Organic Frameworks for Biodiesel Production
    Cirujano, Francisco G.
    Dhakshinamoorthy, Amarajothi
    ADVANCED SUSTAINABLE SYSTEMS, 2021, 5 (08)
  • [9] Multivariate Flexible Metal-Organic Frameworks and Covalent Organic Frameworks
    Sobczak, Szymon K.
    Drweska, Joanna
    Gromelska, Wiktoria
    Roztocki, Kornel
    Janiak, Agnieszka M.
    SMALL, 2024, 20 (51)
  • [10] Coordinatively unsaturated metal sites (open metal sites) in metal-organic frameworks: design and applications
    Kokcam-Demir, Ulku
    Goldman, Anna
    Esrafili, Leili
    Gharib, Maniya
    Morsali, Ali
    Weingart, Oliver
    Janiak, Christoph
    CHEMICAL SOCIETY REVIEWS, 2020, 49 (09) : 2751 - 2798