Mechanically skin-like and water-resistant self-healing bioelastomer for high-tension wound healing

被引:3
|
作者
Huang, Jinyi [1 ,2 ]
Chen, Hongying [1 ]
Jia, Zenghui [1 ,2 ]
Song, Xingqi [1 ]
Wang, Sinan [1 ]
Bai, Baoshuai [1 ]
Wang, Jian [1 ]
Zhang, Junfeng [1 ]
Zhou, Guangdong [1 ,2 ]
Lei, Dong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 9, Sch Med, Dept Cardiol,Shanghai Key Lab Tissue Engn,Dept Pla, Shanghai 200011, Peoples R China
[2] Shandong Second Med Univ, Res Inst Plast Surg, Weifang 261053, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Underwater self-healing; Dynamic bonds; Bioelastomer; High-tension wounds; Resveratrol; RESVERATROL; REPAIR; FILM;
D O I
10.1016/j.bioactmat.2024.04.009
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The biomedical application of self-healing materials in wet or (under)water environments is quite challenging because the insulation and dissociation effects of water molecules significantly reduce the reconstruction of material -interface interactions. Rapid closure with uniform tension of high-tension wounds is often difficult, leading to further deterioration and scarring. Herein, a new type of thermosetting water-resistant self-healing bioelastomer (WRSHE) was designed by synergistically incorporating a stable polyglycerol sebacate (PGS) covalent crosslinking network and triple hybrid dynamic networks consisting of reversible disulfide metathesis (SS), and dimethylglyoxime urethane (Dou) and hydrogen bonds. And a resveratrol-loaded WRSHE (Res@WRSHE) was developed by a swelling, absorption, and crosslinked network locking strategy. WRSHEs exhibited skin -like mechanical properties in terms of nonlinear modulus behavior, biomimetic softness, high stretchability, and good elasticity, and they also achieved ultrafast and highly efficient self-healing in various liquid environments. For wound-healing applications of high-tension full-thickness skin defects, the convenient surface assembly by self-healing of WRSHEs provides uniform contraction stress to facilitate tight closure. Moreover, Res@WRSHEs gradually release resveratrol, which helps inflammatory response reduction, promotes blood vessel regeneration, and accelerates wound repair.
引用
收藏
页码:443 / 455
页数:13
相关论文
empty
未找到相关数据