Existence, Uniqueness and Convergence Solution of Nonlinear Caputo-Fabrizio Fractional Biological Population Model

被引:0
|
作者
Khalouta, Ali [1 ]
机构
[1] Ferhat Abbas Set Univ 1, Fac Sci, Dept Math, Lab Fundamental & Numer Math, Setif 19000, Algeria
来源
关键词
Fractional biological population model; Caputo-Fabrizio fractional derivative; Banach space; J-transform; Decomposition method;
D O I
10.22130/scma.2023.2005194.1360
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies a fractional biological population model involving the Caputo-Fabrizio fractional derivative. We establish the existence and uniqueness of the solution using Banach's fixed point theorem. Furthermore, we propose a new numerical algorithm called J-decomposition method ( J-DM) which is a combined form of the J-transform method and a new decomposition method to solve the proposed model. After the convergence analysis of the J-DM, we provide three numerical examples to illustrate the results obtained. The numerical examples show that this method is easy to use and can give accurate results.
引用
收藏
页码:165 / 196
页数:33
相关论文
共 50 条
  • [1] Existence and Uniqueness Solution of the Model of Enzyme Kinetics in the Sense of Caputo-Fabrizio Fractional Derivative
    Edessa, Geremew Kenassa
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 2022
  • [2] Existence and Uniqueness of Solution for Caputo-Fabrizio Fractional Bratu-Type Initial Value Problem
    Khalouta, A.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2023, 13 (01): : 96 - 112
  • [3] The Existence and Uniqueness of Solution for Fractional Newel-Whitehead-Segel Equation within Caputo-Fabrizio Fractional Operator
    Khalouta, Ali
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2021, 16 (02):
  • [4] Existence and uniqueness results of nonlinear hybrid Caputo-Fabrizio fractional differential equations with periodic boundary conditions
    Monsif, L.
    El Ghordaf, J.
    Oukessou, M.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [5] Existence of the solution for hybrid differential equation with Caputo-Fabrizio fractional derivative
    Chefnaj, Najat
    Hilal, Khalid
    Kajouni, Ahmed
    FILOMAT, 2023, 37 (07) : 2219 - 2226
  • [6] Stability, existence, and uniqueness for solving fractional glioblastoma multiforme using a Caputo-Fabrizio derivative
    Mahdy, Amr M. S.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023,
  • [7] EXISTENCE AND UNIQUENESS OF ZAKHAROV-KUZNETSOV-BURGERS EQUATION WITH CAPUTO-FABRIZIO FRACTIONAL DERIVATIVE
    Bouteraa, Noureddine
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2024, 92 : 59 - 67
  • [8] On study the existence and uniqueness of the solution of the Caputo-Fabrizio coupled system of nonlocal fractional q-integro differential equations
    Ali, Khalid K.
    Raslan, K. R.
    Ibrahim, Amira Abd-Elall
    Mohamed, Mohamed S.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (12) : 13226 - 13242
  • [9] Cancer treatment model with the Caputo-Fabrizio fractional derivative
    Mustafa Ali Dokuyucu
    Ercan Celik
    Hasan Bulut
    Haci Mehmet Baskonus
    The European Physical Journal Plus, 133
  • [10] Cancer treatment model with the Caputo-Fabrizio fractional derivative
    Dokuyucu, Mustafa Ali
    Celik, Ercan
    Bulut, Hasan
    Baskonus, Haci Mehmet
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (03):