Traffic probability for rectangular random matrices

被引:0
|
作者
Zitelli, Gregory [1 ]
机构
[1] Quantitat Res & Portfolio Construct Capital Grp, 6455 Irvine Ctr Dr, Irvine, CA 92618 USA
关键词
Random matrix theory; non-commutative probability; CONDITIONALLY MONOTONE INDEPENDENCE; MARCHENKO-PASTUR; CONVOLUTIONS; LAWS;
D O I
10.1142/S2010326324500138
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article develops a rectangular version of Male's theory of traffic probability, in which an algebra is equipped with a trace evaluated on arbitrary graphs whose edges are labeled by elements and whose vertices are subspaces. Using the language of traffic distributions, we characterize the asymptotic behavior of independent families of rectangular random matrices which are bi-permutation invariant. In the process, we take a tour of non-commutative probabilities and their random matrix models. Special attention is paid to rectangular random matrices with independent or exchangeable entries, including the existence and description of limiting & lowast;-distributions for a broad range of models.
引用
收藏
页数:55
相关论文
共 50 条
  • [1] Products of random rectangular matrices
    Gundlach, VM
    Steinkamp, O
    MATHEMATISCHE NACHRICHTEN, 2000, 212 : 51 - 76
  • [2] The discrepancy of random rectangular matrices
    Altschuler, Dylan J.
    Niles-Weed, Jonathan
    RANDOM STRUCTURES & ALGORITHMS, 2022, 60 (04) : 551 - 593
  • [3] LARGE RECTANGULAR RANDOM MATRICES
    CICUTA, GM
    MOLINARI, L
    MONTALDI, E
    RIVA, F
    JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (08) : 1716 - 1718
  • [4] Random matrices: Probability of normality
    Deneanu, Andrei
    Vu, Van
    ADVANCES IN MATHEMATICS, 2019, 346 : 887 - 907
  • [5] Free probability and random matrices
    Guionnet, A.
    MODERN ASPECTS OF RANDOM MATRIX THEORY, 2014, 72 : 35 - 51
  • [6] Free probability and random matrices
    Speicher, Roland
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, 2014, : 477 - 501
  • [7] Rectangular random matrices, related convolution
    Benaych-Georges, Florent
    PROBABILITY THEORY AND RELATED FIELDS, 2009, 144 (3-4) : 471 - 515
  • [8] Rectangular random matrices, related convolution
    Florent Benaych-Georges
    Probability Theory and Related Fields, 2009, 144 : 471 - 515
  • [9] On the singularity probability of discrete random matrices
    Bourgain, Jean
    Vu, Van H.
    Wood, Philip Matchett
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (02) : 559 - 603
  • [10] Free probability theory and random matrices
    Speicher, R
    ASYMPTOTIC COMBINATORICS WITH APPLICATIONS TO MATHEMATICAL PHYSICS, 2003, 1815 : 53 - 73