Towards Intelligent Mobile Crowdsensing With Task State Information Sharing Over Edge-Assisted UAV Networks

被引:4
|
作者
Deng, Liyuan [1 ,2 ]
Gong, Wei [1 ,2 ]
Liwang, Minghui [3 ]
Li, Li [1 ,2 ]
Zhang, Baoxian [4 ]
Li, Cheng [5 ,6 ]
机构
[1] Tongji Univ, Dept Control Sci & Engn, Shanghai 201804, Peoples R China
[2] Tongji Univ, Shanghai Res Inst Intelligent Autonomous Syst, Shanghai 201210, Peoples R China
[3] Xiamen Univ, Sch Informat, Xiamen 361005, Peoples R China
[4] Univ Chinese Acad Sci, Res Ctr Ubiquitous Sensor Networks, Beijing 100049, Peoples R China
[5] Simon Fraser Univ, Sch Engn Sci, Burnaby, BC V5A 1S6, Canada
[6] Mem Univ, St John, NF A1B 3X5, Canada
基金
中国国家自然科学基金;
关键词
Task analysis; Autonomous aerial vehicles; Data collection; Heuristic algorithms; Training; Information sharing; Crowdsensing; Decentralized and autonomous data collection; mobile crowdsensing; mobile edge computing; multi-agent deep reinforcement learning; task state information sharing; ASSIGNMENT;
D O I
10.1109/TVT.2024.3369089
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the rapid development of edge computing technology, edge-assisted unmanned aerial vehicle (UAV) networks have become popular, helping with fast and cost-effective data collection in mobile crowdsensing (MCS) environments. This paper investigates the online data collection problem for MCS over an edge-assisted UAV network architecture, where UAVs work to collect the data required by tasks at different on-ground point-of-interests (PoIs) in an autonomous and cooperative manner. Different from conventional edge-assisted UAV networks, edge nodes in our paper help distribute, aggregate, share, and update the task state information (TSI, e.g., if a task has been completed, or if it still requires more data), to support efficient and cost-effective data collection, e.g., avoiding repetitive and ineffective task execution. In particular, a UAV can exchange TSI with an edge node when it is within the signal coverage of the edge node, while making decisions on PoI selection and path planning in an online and decentralized manner. To address the issue of edge-assisted UAV data collection, we propose a multi-agent deep reinforcement learning-based algorithm using personalized training with decentralized executing (PTDE) architecture. Different from the traditional centralized training with decentralized executing (CTDE) architecture, our considered architecture adopts the agent-specific state for critic networks instead of the joint observation, thus achieving effective utilization of environmental information. Furthermore, we propose an observation enhancement algorithm based on artificial potential field (APF). Extensive simulation results demonstrate that our proposed algorithm greatly outperforms baseline algorithms in terms of total profit, data collection ratio, geographical fairness, and energy efficiency.
引用
收藏
页码:11773 / 11788
页数:16
相关论文
共 50 条
  • [1] Incentive-Aware Recruitment of Intelligent Vehicles for Edge-Assisted Mobile Crowdsensing
    Liu, Luning
    Wen, Xiangming
    Wang, Luhan
    Lu, Zhaoming
    Jing, Wenpeng
    Chen, Yawen
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (10) : 12085 - 12097
  • [2] Preserving Location Privacy and Accurate Task Allocation in Edge-assisted Mobile Crowdsensing
    Jiang, Yili
    Zhang, Kuan
    Qian, Yi
    Hu, Rose Qingyang
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 704 - 709
  • [3] Truth discovery for mobile workers in edge-assisted mobile crowdsensing
    Shah, Syed Amir Ali
    Ullah, Ata
    Subhan, Fazli
    Jhanjhi, N. Z.
    Masud, Mehedi
    Alqhatani, Abdulmajeed
    ICT EXPRESS, 2024, 10 (05): : 1087 - 1093
  • [4] CHASTE: Incentive Mechanism in Edge-Assisted Mobile Crowdsensing
    Ying, Chenhao
    Jin, Haiming
    Wang, Xudong
    Luo, Yuan
    2020 17TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON SENSING, COMMUNICATION, AND NETWORKING (SECON), 2020,
  • [5] Joint Crowdsensing and Offloading Algorithms for Edge-Assisted Internet of Intelligent Vehicles
    Kim, Sungwook
    IEEE ACCESS, 2023, 11 : 64897 - 64906
  • [6] Secure Data Deduplication Protocol for Edge-Assisted Mobile CrowdSensing Services
    Li, Jiliang
    Su, Zhou
    Guo, Deke
    Choo, Kim-Kwang Raymond
    Ji, Yusheng
    Pu, Huayan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (01) : 742 - 753
  • [7] Multitask Data Collection With Limited Budget in Edge-Assisted Mobile Crowdsensing
    Liu, Xiaolong
    Chen, Honglong
    Liu, Yuping
    Wei, Wentao
    Xue, Huansheng
    Xia, Feng
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (09): : 16845 - 16858
  • [8] A task allocation and pricing mechanism based on Stackelberg game for edge-assisted crowdsensing
    Gao, Yuzhou
    Ma, Bowen
    Leng, Yajing
    Zhao, Zhuofeng
    Huang, Jiwei
    WIRELESS NETWORKS, 2024, 30 (08) : 6987 - 7001
  • [9] Incentivizing for Truth Discovery in Edge-assisted Large-scale Mobile Crowdsensing
    Xu, Jia
    Yang, Shangshu
    Lu, Weifeng
    Xu, Lijie
    Yang, Dejun
    SENSORS, 2020, 20 (03)
  • [10] Edge-Assisted Public Key Homomorphic Encryption for Preserving Privacy in Mobile Crowdsensing
    Ganjavi, Ramin
    Sharafat, Ahmad R.
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (02) : 1107 - 1117