Machine learning models for biomass energy content prediction: A correlation-based optimal feature selection approach

被引:34
|
作者
Dodo, Usman Alhaji [1 ,2 ]
Ashigwuike, Evans Chinemezu [1 ]
Abba, Sani Isah [3 ]
机构
[1] Univ Abuja, Fac Engn, Dept Elect & Elect Engn, Abuja, Nigeria
[2] Baze Univ, Fac Engn, Dept Elect & Comp Engn, Abuja, Nigeria
[3] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Membrane & Water Secur, Dhahran 31261, Saudi Arabia
来源
关键词
Artificial intelligence; Biomass energy; Heating value; Machine learning; Prediction; HIGHER HEATING VALUE; ARTIFICIAL NEURAL-NETWORK; ANFIS; REGRESSION; VALUES; WASTE;
D O I
10.1016/j.biteb.2022.101167
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In this study, a multilinear regression (MLR) and three machine learning techniques, i.e., an adaptive neuro-fuzzy inference system (ANFIS), an artificial neural network (ANN), and a support vector machine (SVM) were employed to develop biomass higher heating value (HHV) prediction models as a function of the proximate analysis. Seven inputs selection were applied to explore the extent of correlation between the independent variables and the HHV. The pairing of the volatile matter and fixed carbon presented the most accurate model in ANN, SVM, and MLR while in ANFIS, the ash combined with fixed carbon was more effective. Overall, the combination of ash and fixed carbon in ANFIS was superior in prediction performance having presented the highest correlation coefficient of 0.9371 and the least mean squared error of 0.0029. These techniques can guarantee precise predictions of the HHV of biomass using proximate analysis instead of rigorous and expensive experimental procedures.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Feature selection with Fast Correlation-Based Filter for Breast cancer prediction and Classification using Machine Learning Algorithms
    Khourdifi, Youness
    Bahaj, Mohamed
    2018 INTERNATIONAL SYMPOSIUM ON ADVANCED ELECTRICAL AND COMMUNICATION TECHNOLOGIES (ISAECT), 2018,
  • [2] Impact of Correlation-based Feature Selection on Photovoltaic Power Prediction
    Kwon, Jung-Hyok
    Lee, Sang-Woo
    Lee, Sol-Bee
    Kim, Eui-Jik
    2019 4TH TECHNOLOGY INNOVATION MANAGEMENT AND ENGINEERING SCIENCE INTERNATIONAL CONFERENCE (TIMES-ICON), 2019,
  • [3] On Optimal Correlation-Based Prediction
    Bottai, Matteo
    Kim, Taeho
    Lieberman, Benjamin
    Luta, George
    Pena, Edsel
    AMERICAN STATISTICIAN, 2022, 76 (04): : 313 - 321
  • [4] Correlation-Based Feature Selection and Regression
    Cui, Yue
    Lin, Jesse S.
    Zhang, Shiliang
    Luo, Suhuai
    Tian, Qi
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING-PCM 2010, PT I, 2010, 6297 : 25 - +
  • [5] Feature Subset Selection: A Correlation-Based SVM Filter Approach
    Li, Boyang
    Wang, Qiangwei
    Hu, Jinglu
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2011, 6 (02) : 173 - 179
  • [6] Malware Detection Using Deep Learning and Correlation-Based Feature Selection
    Alomari, Esraa Saleh
    Nuiaa, Riyadh Rahef
    Alyasseri, Zaid Abdi Alkareem
    Mohammed, Husam Jasim
    Sani, Nor Samsiah
    Esa, Mohd Isrul
    Musawi, Bashaer Abbuod
    SYMMETRY-BASEL, 2023, 15 (01):
  • [7] A Correlation-Based Feature Selection and Classification Approach for Autism Spectrum Disorder
    Verma, Manvi
    Kumar, Dinesh
    INTERNATIONAL JOURNAL OF INFORMATION SYSTEM MODELING AND DESIGN, 2021, 12 (02) : 51 - 66
  • [8] Prediction of energy content of biomass based on hybrid machine learning ensemble algorithm
    Dodo, Usman Alhaji
    Ashigwuike, Evans Chinemezu
    Emechebea, Jonas Nwachukwu
    Abbac, Sani Isah
    ENERGY NEXUS, 2022, 8
  • [9] Distributed correlation-based feature selection in spark
    Palma-Mendoza, Raul Jose
    de-Marcos, Luis
    Rodriguez, Daniel
    Alonso-Betanzos, Amparo
    INFORMATION SCIENCES, 2019, 496 : 287 - 299
  • [10] Hybrid Classification Model of Correlation-based Feature Selection and Support Vector Machine
    Dubey, Vimal Kumar
    Saxena, Amit Kumar
    2016 IEEE INTERNATIONAL CONFERENCE ON CURRENT TRENDS IN ADVANCED COMPUTING (ICCTAC), 2016,