Automated kharif rice mapping using SAR data and machine learning techniques in GEE platform

被引:0
|
作者
Vyas, Saurabh P. [1 ]
Kumar, Mukesh [2 ]
Kathiria, Dhaval [1 ]
Jani, Mandakini [1 ]
Pandya, Mehul R. [2 ]
Bhattacharya, Bimal K. [2 ]
机构
[1] Anand Agr Univ, Coll Agr Informat Technol, Anand 388110, India
[2] Indian Space Res Org, Space Applicat Ctr, Ahmadabad 380058, India
来源
CURRENT SCIENCE | 2024年 / 126卷 / 10期
关键词
Google earth engine; large-scale rice mapping; machine learning; multi-temporal; SAR; LAND-COVER; CLASSIFICATION; PADDY; EXTRACTION; CROPS;
D O I
10.18520/cs/v126/i10/1265-1272
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The present study employs temporal C -band Sentinel -1 synthetic aperture radar (SAR) data within the Google Earth Engine (GEE) platform to evaluate discriminability and estimate acreage of kharif rice across major Indian states. Utilizing multi -temporal Sentinel -1 Cband SAR data, including time -series cross -polarization vertical-horizontal channels, the research spanned states such as Punjab, Haryana, Uttar Pradesh, Madhya Pradesh, Bihar, Jharkhand, Chhattisgarh, Telangana, Andhra Pradesh, West Bengal, Odisha and Assam. Employing five machine learning algorithms on GEE, with random forest demonstrating high performance, achieved 98.59% accuracy and 0.92 kappa coefficient ( kappa ) in Odisha. Subsequently, the RF algorithm was applied for kharif rice acreage estimation, yielding overall accuracies from 88.48% to 97.28% and kappa between 0.87 and 0.96 with deviations from reported acreage ranging from 0.95% to 12% across diverse states. The study underscores the efficacy of SAR data and machine learning within GEE for precise large-scale automated mapping of kharif rice.
引用
收藏
页码:1265 / 1272
页数:8
相关论文
共 50 条
  • [1] Inventory and mapping of kharif crops using machine learning with EOS-04 time-series SAR data
    Bhattacharya, Bimal K.
    Chowdary, V. M.
    Das, Ayan
    Kumar, Mukesh
    Poloju, Srikanth
    Kumari, Mamta
    Chakraborty, Abhishek
    Haldar, Dipanwita
    Maity, Saroj
    CURRENT SCIENCE, 2024, 126 (09): : 1050 - 1060
  • [2] Realistic SAR Data Augmentation using Machine Learning Techniques
    Lewis, Benjamin
    DeGuchy, Omar
    Sebastian, Joseph
    Kaminski, John
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXVI, 2019, 10987
  • [3] Dynamics of the Burlan and Pomacochas Lakes Using SAR Data in GEE, Machine Learning Classifiers, and Regression Methods
    Gomez Fernandez, Darwin
    Salas Lopez, Rolando
    Rojas Briceno, Nilton B.
    Silva Lopez, Jhonsy O.
    Oliva, Manuel
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (11)
  • [4] Acreage estimation of kharif rice crop using Sentinel-1 temporal SAR data
    Nandepu V. V. S. S. Teja Subbarao
    Jugal Kishore Mani
    Ashish Shrivastava
    K. Srinivas
    A. O. Varghese
    Spatial Information Research, 2021, 29 : 495 - 505
  • [5] Rice Mapping Using Hybrid Polarimetric SAR Data
    Xie, Lei
    Zhang, Hong
    10TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR (EUSAR 2014), 2014,
  • [6] Acreage estimation of kharif rice crop using Sentinel-1 temporal SAR data
    Subbarao, Nandepu V. V. S. S. Teja
    Mani, Jugal Kishore
    Shrivastava, Ashish
    Srinivas, K.
    Varghese, A. O.
    SPATIAL INFORMATION RESEARCH, 2021, 29 (04) : 495 - 505
  • [7] MAPPING RICE AREA USING SENTINEL-1 SAR DATA AND DEEP LEARNING
    Shen, Guozhuang
    Nie, Chenwei
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3402 - 3405
  • [8] Mapping of Kharif Sown Area Using Temporal RISAT-1A SAR and Optical Data
    Srikanth, P.
    Biswal, Anima
    Sahay, Bhavana
    Chowdary, V. M.
    Sreenivas, K.
    Chauhan, Prakash
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2025, 53 (01) : 11 - 24
  • [9] Landslide Susceptibility Mapping for Road Corridors by Using a Combined Interferometry SAR and Machine Learning Techniques
    Arsyad, Ardy
    Alimuddin
    Litha, Yodi
    GEO-RISK 2023: INNOVATION IN DATA AND ANALYSIS METHODS, 2023, 345 : 245 - 255
  • [10] Machine Learning Techniques for Phenology Assessment of Sugarcane Using Conjunctive SAR and Optical Data
    Yeasin, Md
    Haldar, Dipanwita
    Kumar, Suresh
    Paul, Ranjit Kumar
    Ghosh, Sonaka
    REMOTE SENSING, 2022, 14 (14)