Powers of permutations that avoid chains of patterns

被引:2
|
作者
Archer, Kassie [1 ]
Geary, Aaron [1 ]
机构
[1] US Naval Acad, Dept Math, Annapolis, MD 21402 USA
关键词
Pattern avoidance; Strong pattern avoidance; Unimodal permutations;
D O I
10.1016/j.disc.2024.114040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a recent paper, B & oacute;na and Smith define the notion of strong avoidance, in which a permutation and its square both avoid a given pattern. In this paper, we generalize this idea to what we call chain avoidance. We say that a permutation avoids a chain of patterns (tau 1 : tau 2 : <middle dot> <middle dot> <middle dot> : tau k) if the i-th power of the permutation avoids the pattern tau i. We enumerate the set of permutations pi which avoid the chain (213, 312 : tau), i.e., unimodal permutations whose square avoids tau, for tau e S3 and use this to find a lower bound on the number of permutations that avoid the chain (312 : tau) for tau e S3. We finish the paper by discussing permutations that avoid longer chains.
引用
收藏
页数:14
相关论文
共 50 条