Beyond COVID-19: Wastewater-based epidemiology for multipathogen surveillance and normalization strategies

被引:0
|
作者
Malla, Bikash [1 ]
Shrestha, Sadhana [1 ]
Sthapit, Niva [1 ]
Hirai, Soichiro [2 ]
Raya, Sunayana [2 ]
Rahmani, Aulia Fajar [2 ]
Angga, Made Sandhyana [2 ]
Siri, Yadpiroon [2 ]
Ruti, Annisa Andarini [2 ]
Haramoto, Eiji [1 ]
机构
[1] Univ Yamanashi, Interdisciplinary Ctr River Basin Environm, 4-3-11 Takeda, Kofu, Yamanashi 4008511, Japan
[2] Univ Yamanashi, Dept Engn, 4-3-11 Takeda, Kofu, Yamanashi 4008511, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
COVID-19; Influenza; Normalization; Norovirus; SARS-CoV-2; Wastewater -based epidemiology; VIRUSES;
D O I
10.1016/j.scitotenv.2024.174419
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wastewater-based epidemiology (WBE) is a critical tool for monitoring community health. Although much attention has focused on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent of coronavirus disease 2019 (COVID-19), other pathogens also pose significant health risks. This study quantified the presence of SARS-CoV-2, influenza A virus (Inf-A), and noroviruses of genogroups I (NoV-GI) and II (NoV-GII) in wastewater samples collected weekly ( n = 170) from July 2023 to February 2024 from five wastewater treatment plants (WWTPs) in Yamanashi Prefecture, Japan, by quantitative PCR. Inf-A RNA exhibited localized prevalence with positive ratios of 59 % -82 % in different WWTPs, suggesting regional outbreaks within specific areas. NoV-GI (94 %, 160/170) and NoV-GII (100 %, 170/170) RNA were highly prevalent, with NoV-GII (6.1 +/- 0.8 log 10 copies/L) consistently exceeding NoV-GI (5.4 +/- 0.7 log 10 copies/L) RNA concentrations. SARS-CoV-2 RNA was detected in 100 % of the samples, with mean concentrations of 5.3 +/- 0.5 log 10 copies/L in WWTP E and 5.8 +/- 0.4 log 10 copies/L each in other WWTPs. Seasonal variability was evident, with higher concentrations of all pathogenic viruses during winter. Non-normalized and normalized virus concentrations by fecal indicator bacteria ( Escherichia coli and total coliforms), an indicator virus (pepper mild mottle virus (PMMoV)), and turbidity revealed significant positive associations with the reported disease cases. Inf-A and NoV-GI + GII RNA concentrations showed strong correlations with influenza and acute gastroenteritis cases, particularly when normalized to E. coli (Spearman's rho = 0.70 -0.81) and total coliforms ( rho = 0.70 -0.81), respectively. For SARSCoV-2, non-normalized concentrations showed a correlation of 0.61, decreasing to 0.31 when normalized to PMMoV, suggesting that PMMoV is unsuitable. Turbidity normalization also yielded suboptimal results. This study underscored the importance of selecting suitable normalization parameters tailored to specific pathogens for accurate disease trend monitoring using WBE, demonstrating its utility beyond COVID-19 surveillance.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Wastewater-based epidemiology for COVID-19 surveillance and beyond: A survey
    Chen, Chen
    Wang, Yunfan
    Kaur, Gursharn
    Adiga, Aniruddha
    Espinoza, Baltazar
    Venkatramanan, Srinivasan
    Warren, Andrew
    Lewis, Bryan
    Crow, Justin
    Singh, Rekha
    Lorentz, Alexandra
    Toney, Denise
    Marathe, Madhav
    EPIDEMICS, 2024, 49
  • [2] COVID-19 Surveillance Wastewater-based epidemiology
    Mullasseri, Sileesh
    CURRENT SCIENCE, 2021, 120 (11): : 1660 - 1660
  • [3] A wastewater-based epidemiology tool for COVID-19 surveillance in Portugal
    Monteiro, Silvia
    Rente, Daniela
    Cunha, Monica, V
    Gomes, Manuel Carmo
    Marques, Tiago A.
    Lourenco, Artur B.
    Cardoso, Eugenia
    Alvaro, Pedro
    Silva, Marco
    Coelho, Norberta
    Vilaca, Joao
    Meireles, Fatima
    Broco, Nuno
    Carvalho, Marta
    Santos, Ricardo
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 804
  • [4] COVID-19 surveillance in Southeastern Virginia using wastewater-based epidemiology
    Gonzalez, Raul
    Curtis, Kyle
    Bivins, Aaron
    Bibby, Kyle
    Weir, Mark H.
    Yetka, Kathleen
    Thompson, Hannah
    Keeling, David
    Mitchell, Jamie
    Gonzalez, Dana
    WATER RESEARCH, 2020, 186
  • [5] A multistate assessment of population normalization factors for wastewater-based epidemiology of COVID-19
    Rainey, Andrew
    Liang, Song T.
    Bisesi Jr, Joseph H.
    Sabo-Attwood, Tara
    Maurelli, Anthony
    PLOS ONE, 2023, 18 (04):
  • [6] Wastewater-Based Epidemiology for Managing the COVID-19 Pandemic
    Fuschi, Claire
    Pu, Haihui
    Negri, Maria
    Colwell, Rita
    Chen, Junhong
    ACS ES&T WATER, 2021, 1 (06): : 1352 - 1362
  • [7] Contextualizing Wastewater-Based surveillance in the COVID-19 vaccination era
    Armas, Federica
    Chandra, Franciscus
    Lee, Wei Lin
    Gu, Xiaoqiong
    Chen, Hongjie
    Xiao, Amy
    Leifels, Mats
    Wuertz, Stefan
    Alm, Eric J.
    Thompson, Janelle
    ENVIRONMENT INTERNATIONAL, 2023, 171
  • [8] Evaluating Interlaboratory Variability in Wastewater-Based COVID-19 Surveillance
    Azzellino, Arianna
    Pellegrinelli, Laura
    Pedrini, Ramon
    Turolla, Andrea
    Bertasi, Barbara
    Binda, Sandro
    Castiglioni, Sara
    Cocuzza, Clementina E.
    Ferrari, Fabio
    Franzetti, Andrea
    Guiso, Maria Giovanna
    Losio, Marina Nadia
    Martinelli, Marianna
    Martines, Antonino
    Musumeci, Rosario
    Oliva, Desdemona
    Sandri, Laura
    Primache, Valeria
    Righi, Francesco
    Scarazzato, Annalisa
    Schiarea, Silvia
    Pariani, Elena
    Ammoni, Emanuela
    Cereda, Danilo
    Malpei, Francesca
    MICROORGANISMS, 2025, 13 (03)
  • [9] Wastewater-Based Epidemiological Modeling for Continuous Surveillance of COVID-19 Outbreak
    Fazli, Mehrdad
    Sklar, Samuel
    Porter, Michael D.
    French, Brent A.
    Shakeri, Heman
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 4342 - 4349
  • [10] How has the COVID-19 pandemic impacted wastewater-based epidemiology?
    Barcellos, Demian S.
    Barquilha, Carlos E. R.
    Oliveira, Pamela E.
    Prokopiuk, Mario
    Etchepare, Ramiro G.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 892