Buildings are essential to the development and sustainability of any society, due to the criticality of their residential, commercial and educational roles. However, the building sector has also been classified as highly energy-intensive, due to its ever-rising annual energy consumption trends. Buildings' energy consumption rate is in fact expected to increase further over the coming years, due to current trends of global population growth. It is therefore imperative to deduce and implement strategies that would improve the sustainability of energy within the built environment. Taking advantage of passive energy consumption optimisation strategies is an apt alternative in this case. However, the procedure of selecting the best passive energy consumption optimisation strategy, including selection of the passive strategy itself, selection criteria and selection method, has been a challenge for buildings' experts. The use of Multiple Criteria Decision Analysis (MCDA)/Multiple Criteria Decision-Making (MCDM) approaches have proven useful for aiding the selection of alternatives based on multiple criteria in numerous studies during recent years. However, there are several techniques within the MCDA/MCDM class of techniques, which make the selection process rather convoluted. Therefore, the overarching aim of the current study is to generate the most prevalent passive energy consumption optimisation strategies for buildings, the criteria for their selections and the corresponding MCDA/MCDM techniques that aided such selections. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Procedure for Performing Systematic Reviews (PPSR) were used to conduct the current systematic literature review (SLR). The SLR examined research articles that are domiciled within very popular databases such as Compendex, GEOBASE, GeoRef, Inspec, Web of Science (WoS) and Scopus, based on meticulously constructed keywords. It was observed that limited passive strategies, selection criteria and MCDM/MCDA techniques were considered in the investigated articles, making it a serious gap in the body of knowledge, which needs accurate consideration for future studies. For instance, it was observed that most studies focussed on particular passive strategies such as optimisation of insulation thickness and location, natural ventilation envelope, etc., while other strategies such as thermal bridge reduction, enhancing vapour tightness and natural daylighting are underrepresented. The results of the SLR are hereby provided and discussed in the current study.